Skip to main content
Log in

Trace metal distributions in the sediments of the Little Akaki River, Addis Ababa, Ethiopia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The levels and distribution of trace metals (Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) at eleven water and sediment stations on the Little Akaki River (LAR) in Addis Ababa, Ethiopia, were determined. The binding forms of the metals in various geochemical fractions of the sediments were also quantified. The molar ratio of the sum of the simultaneously extractable metals (∑SEM) and acid-volatile sulphide (AVS)—as a measure for predicting metal-induced toxicity—was estimated. LAR trace levels in water for Cu, Zn, and, particularly Mn were, in most instances, higher than the recommended guidelines for healthy aquatic ecosystems. Total trace metal (TTM) contents in the LAR sediments at certain stations exceeded “threshold effect concentrations” and even “probable effect concentrations”, especially in the cases of Zn, Cu, Ni, Pb, and at all stations for Mn. This became more apparent after applying “normalizations” to the relatively lower TTM adsorption capacities of coarse-grained, organic-poor sediments. Sequential extraction of the sediments showed that trace metals generally have a higher affinity for Fe-Mn oxide and organic matter/sulphidic fractions, followed by the residual fraction. Mn was relatively strongly bound to the exchangeable, carbonate bound fractions, whereas a large proportion of Cr was found in the residual fraction. The Σ[SEM]/[AVS] ratio pointed to potential metal-induced toxicity of sediments collected from seven out of the eleven stations. The results indicate that trace metal pollution pose risks to the health of ecosystems, and to human communities that use the river for a range of different purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akele, M. L. (2012). MSc thesis WM. In Assessment of trace metals distibution in sediments of the Little Akaki River (pp. 12–16). Addis Ababa, Ethiopia: UNESCO-IHE.

    Google Scholar 

  • Alemayehu, T. (2006). Heavy metal concentration in the urban environment of Addis Ababa, Ethiopia. Journal of Soil and Sediment Contamination, 15(6), 591–602.

    Article  CAS  Google Scholar 

  • Alemayehu Abiye, T., Sulaiman, H., & Hailu, A. (2011). Metal concentration in vegetables grown in the hydrothermally affected area in Ethiopia. Journal of Geography and Geology, 3(1), 86–93.

    Article  Google Scholar 

  • Anonymous (2016). Ministry of housing, spatial planning and the environment: http://wetten.overheid.nl/BWBR0023085/2016-01-01; accessed on April 10, 2016.

  • Argese, E., & Bettiol, C. (2001). Heavy metal partitioning in sediments from the lagoon of Venive (Italy). Toxicological and Environmental Chemistry, 78(3–4), 157–170.

    Article  Google Scholar 

  • AWDR. (2006). Protecting ecosystems in Africa. African Water Development Report, 2006.

  • Baruah, N. K., Kotoky, P., Bhattacharyya, K. G., & Borah, G. C. (1996). Metal speciation in Jhanji River sediments. Science of the Total Environment, 193(1), 1–12.

    Article  CAS  Google Scholar 

  • Chapman, D. (1996). Water quality assessments: a guide to use of biota, sediments and water in environmental monitoring (2nd ed.). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • DaSilva, I. S., Abate, G., Lihtig, J., & Masini, J. C. (2002). Heavy metal distribution in recent sediments of the Tietê-Pinheiros system in São Paulo State, Brazil. Applied Geochemistry, 17(2), 105–116.

    Article  CAS  Google Scholar 

  • Donze, M. (1990). Shaping the Environment: aquatic pollution and dredging in the European community. The Hague, the Netherlands: Delwel.

    Google Scholar 

  • Duke, L. D., Buffleben, M., & Bauersachs, L. A. (1998). Pollutants in storm water runoff from metal plating facilities, Los Angeles, California. Waste Management, 18(1), 25–38.

    Article  CAS  Google Scholar 

  • ESRD. (2014). Environmental quality guidelines for Alberta surface waters. Edmonton, Canada: Water Policy Branch, Policy Division.

    Google Scholar 

  • Fang, T., Li, X., & Zhang, G. (2005). Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 61(3), 420–431.

    Article  CAS  Google Scholar 

  • Förstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Berlin, Germany: Springer Verlag.

    Google Scholar 

  • Håkanson, L., & Jansson, M. (1983). Lake sedimentolog. Berlin, Germany: Springer Verlag.

    Book  Google Scholar 

  • Houba, V. J. G., Van der Lee, J. J., & Novozamsky, J. (1995). Soil analysis procedures. Lecture notes #6175208. Wageningen, the Netherlands: Wageningen University and Research.

    Google Scholar 

  • Jaagumagi, R. (1992). Development of the Ontario Provincial Sediment Quality Guidelines for Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Nickel, and Zinc. Ministry of the Environment. http://www.archive.org/stream/developmentofont00jaaguoft#page/n1/mode/2up; accessed July 7, 2014.

  • Kelderman, P. (2012). Sediment pollution, transport, and abatement measures in the city canals of Delft, the Netherlands. Water, Air, & Soil Pollution, 223(7), 4627–4645.

    Article  CAS  Google Scholar 

  • Kelderman, P., & Osman, A. A. (2007). Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands). Water Research, 41(18), 4251–4261.

    Article  CAS  Google Scholar 

  • Kiratli, N., & Ergin, M. (1996). Partitioning of heavy metals in surface Black Sea sediments. Applied Geochemistry, 11(6), 775–788.

    Article  CAS  Google Scholar 

  • Li, P., Qian, H., Howard, K. F., Wu, J., & Lyu, X. (2014). Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China. Environmental Monitoring and Assessment, 186(3), 1385–1398.

    Article  CAS  Google Scholar 

  • Lin, J., Chen, S., & Su, C. (2003). Assessment of sediment toxicity by metal speciation in different particle-size fractions of river sediment. Water Science and Technology, 47(7–8), 233–241.

    CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.

    Article  CAS  Google Scholar 

  • Malaj, E., Rousseau, D., Du Laing, G., & Lens, P. (2012). Near-shore distribution of heavy metals in the Albanian part of Lake Ohrid. Environmental Monitoring and Assessment, 184, 1823–1839.

    Article  CAS  Google Scholar 

  • Mekkonen, K. N., Ambushe, A. A., Chandravanshi, B. S., Abshiro, M. R., & McCrindle, R. I. (2013). Assessment of the concentration of Cr, Mn and Fe in sediment using laser-induced breakdown spectroscopy. Bulletin of the Chemical Society of Ethiopia, 27(1), 1–13.

    Google Scholar 

  • Melaku, S., Wondimu, T., & Dams, R. L. M. (2005). Multi-element analysis of Tinishu Akaki River Sediment, Ethiopia, by ICP-MS after microwave assisted digestion. Canadian Journal of Analytical Sciences and Spectroscopy, 50(1), 31–40.

    CAS  Google Scholar 

  • Melaku, S., Wondimu, T., Dams, R., & Moens, L. (2007). Pollution status of Tinishu Akaki River and its tributaries (Ethiopia) evaluated using physico-chemical parameters, major ions, and nutrients. Bulletin of the Chemical Society of Ethiopia, 21(1), 13–22.

    Article  CAS  Google Scholar 

  • Miller, J. R., & Orbock Miller, S. M. (2007). Contaminated rivers: a geomorphological-geochemical approach to site assessment and remediation. Dordrecht, the Netherlands: Springer.

    Google Scholar 

  • Nemerow, N. L. (1978). Industrial water pollution. Reading, UK: Addison-Wesley.

    Google Scholar 

  • Okonkwo, J. O., & Mothiba, M. (2005). Physico-chemical characteristics and pollution levels of heavy metals in the rivers in Thohoyandou, South Africa. Journal of Hydrology, 308(1–4), 122–127.

    Article  CAS  Google Scholar 

  • Pardo, R., Barrado, E., Lourdes, P., & Vega, M. (1990). Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Research, 24(3), 373–379.

    Article  CAS  Google Scholar 

  • Prabu, P. (2009). Impact of heavy metal contamination of Akaki River of Ethiopia on soil and metal toxicity on cultivated vegetable crops. Electronic Journal of Environmental, Agricultural and Food Chemistry, 8(9), 818–827.

    CAS  Google Scholar 

  • Prica, M., Dalmacija, B., Rončević, S., Krčmar, D., & Bečelić, M. (2008). A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Science of the Total Environment, 389(2–3), 235–244.

    Article  CAS  Google Scholar 

  • Ramos, L., Gonzalez, M., & Hernandez, L. (1999). Sequential extraction of copper, lead, cadmium, and zinc in sediments from Ebro river (Spain): relationship with levels detected in earthworms. Bulletin of Environmental Contamination and Toxicology, 62(3), 301–308.

    Article  CAS  Google Scholar 

  • Standard methods for the examination of water and wastewater (2005). 21st edn, American Public Health Association/ American Water Works Association/Water Environment Federation, Washington DC, USA.

  • Stumm, W., & Morgan, J. (1981). Aquatic chemistry. New York, USA: J Wiley and Sons.

    Google Scholar 

  • Teixeira, E. T., Ortiz, L. O., Alves, M. A., & Sanchez, J. S. (2001). Distribution of selected heavy metals in fluvial sediments of the coal mining region of Baixo Jacuí, RS, Brazil. Environmental Geology, 41(1), 145–154.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Thomann, R. V., & Müller, J. A. (1987). Principles of water quality and control. New York, USA: Harper and Row.

    Google Scholar 

  • Tokalioğlu, Ş., Kartal, Ş., & Elçi, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 413(1–2), 33–40.

    Article  Google Scholar 

  • Tsai, L. J., Yu, K. C., Chang, J. S., & Ho, S. T. (1998). Fractionation of heavy metals in sediment cores from the Ell-Ren river, Taiwan. Water Science and Technology, 37(6–7), 217–224.

    Article  CAS  Google Scholar 

  • USEPA. (2004). The incidence and severity of sediment contamination in surface waters of the United States (2nd edn). Washington DC, USA: National Sediment Quality Survey.EPA 823-R-04-007.

    Google Scholar 

  • Van den Hoop, M. A. G. T., Den Hollander, H. A., & Kerdijk, H. N. (1997). Spatial and seasonal variations of acid volatile sulphide (AVS) and simultaneously extracted metals (SEM) in Dutch marine and freshwater sediments. Chemosphere, 35(10), 2307–2316.

    Article  Google Scholar 

  • Van Rooijen, D., Biggs, T., Smout, I., & Drechsel, P. (2010). Urban growth, wastewater production and use in irrigated agriculture: a comparative study of Accra, Addis Ababa and Hyderabad. Irrigation and Drainage Systems, 24(1), 53–64.

    Article  Google Scholar 

  • WHO. (2011). Guidelines for drinking water quality (4th ed.). Geneva, Switzerland: WHO.

    Google Scholar 

  • Yin, H. B., Fan, C. X., Ding, S. M., Zhang, L., & Zhong, J. C. (2008). Geochemistry of iron, sulfur and related heavy metals in metal-polluted Taihu Lake sediments. Pedosphere, 18(5), 564–573.

    Article  CAS  Google Scholar 

  • Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(17), 4086–4094.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Don van Galen and Lyzette Robbemont, UNESCO-IHE, for their invaluable laboratory assistance. This research was financially supported by the Netherlands Fellowship Program (NFP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Akele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akele, M.L., Kelderman, P., Koning, C.W. et al. Trace metal distributions in the sediments of the Little Akaki River, Addis Ababa, Ethiopia. Environ Monit Assess 188, 389 (2016). https://doi.org/10.1007/s10661-016-5387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5387-z

Keywords

Navigation