Skip to main content
Log in

Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sediments may be a repository of contaminants in freshwater ecosystems. One way to assess the quality of this compartment, in terms of potentially bioavailable metals, is by the analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). In order to investigate the bioavailability, toxicity, and compartmentalization of different metals (Cd, Cr, Cu, Ni, Pb, Zn), sampling of surface sediments was performed at nine stations along the Paiva Castro reservoir (São Paulo, Brazil). The metals were analyzed using atomic absorption spectroscopy. Sediment organic matter (OM), organic carbon (OC), and grain size were also measured. The parameters pH, EH, temperature, and dissolved oxygen were determined at the sediment-water interface. Chronic and acute toxicological tests were performed with sediments from the area where water was extracted for the public water supply. Low levels of OM, associated with loss of stratification in the water column, explained the relatively low AVS values. The molar ratio ∑[SEM]−[AVS]/fOC was less than 130 mmol/kg−1 for all the sampling stations, indicating that the metals were not bioavailable. With the exception of Cd, metal levels were in accordance with background concentrations and the threshold effect level (TEL) established by the Canadian Council of Ministers of the Environment. The ecotoxicological tests confirmed the absence of toxic effects to biota. Application of principal component analysis indicated the presence of four compartments along the reservoir: (1) a riverine zone, potentially threatened by contamination with Cd; (2) an intermediate zone; (3) a limnic area; and (4) the area where water was taken for the public water supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABNT. (2007). Ecotoxicologia aquática- preservação e preparo de amostras. NBR 15469. Rio de Janeiro: ABNT.

    Google Scholar 

  • ABNT. (2009). Água—Ensaios de toxicidade com Daphnia similis Claus, 1876 (Crustácea, Cladocera) Norma NBR 12713 (p. 23). Rio de Janeiro: ABNT.

    Google Scholar 

  • Allaby M. (2008). Oxford dictionary of earth sciences, 3rd ed (p. 418). Oxford: Oxford University Press.

  • Allen, H. E., Boothman, W., Di Toro, D. M., & Mahony, J. D. (1991). Determination of acid volatile sulfide and selected simultaneously extractable metals in sediment. EPA 821-R-91-100. Washington: USEPA, Office of Water, Office of Science and Technology, Health and Ecological Criteria.

    Google Scholar 

  • Allen, H. E., Fu, G., & Deng, B. (1993). Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem, 12, 1441–1453.

    Article  CAS  Google Scholar 

  • Ambühl, H., & Bührer, H. (1975). Technik der Entnahme ungestörter Grossproblen von Seesedimenten: Ein verbessertes Boohrlot. Schweizerische Zeitschrift Fur Hydrologie-Swiss J Hydrol, 37, 175–186.

    Google Scholar 

  • Araújo, R.P.A., Botta-Paschoal, C.M.R., Silvério, P.F., Almeida, F.V. Rodrigues, P. F., Umbuzeiro, G.A., Jardim, W.F. &. Mozeto, A. A. (2006a). Application of toxicity identification evaluation to sediment in a Highly contaminated water reservoir in southeastern Brazil. Environmental Toxicology and Chemistry, 25 (2), 581–588.

  • Araújo, R.P.A., Shimizu, G.Y., Bohrer, M.B.C., Jardim, W.( 2006b). In: Zagatto, P.A. & Bertoletti, E., eds,. Ecotoxicologia aquática: Princípios e aplicações. (p.464). São Carlos: RiMa.

  • Bartlett, R.J. (1999). Characterising soil redox potential. In: Sparks, D.L. (Ed.), Soil Physical Chemistry (pp. 371-389). Florida: CRC Press Boca Raton.

  • Beghelli, F.G.S.; Pompêo, M.L.M.; Rosa, A.H.; Moschini-Carlos, V. (2016). Effects of copper in sediments on benthic macroinvertebrate communities in tropical reservoirs. Limnetica. (accepted for publication)

  • Berner, R. A. (1981). A new geochemical classification of sedimentary environments. J Sediment Petrol, 51(2), 359–365.

    CAS  Google Scholar 

  • Bizarro, V. G., Meurer, E. J., & Tatsch, F. R. P. (2008). Teor de cádmio em fertilizantes fosfatados comercializados no Brasil. Ciência Rural, 38(1), 247–250.

    Article  CAS  Google Scholar 

  • Campana, O., Rodríguez, A., & Blasco, J. (2009). Identification of a potential toxic hot spot associated with AVS spatial and seasonal variation. Arch EnvironContaination Toxicol, 56, 416–425.

    Article  CAS  Google Scholar 

  • Cardoso-Silva, S., Ferreira, P. A. L., Moschini-Carlos, V., Figueira, R. C. L., & Pompeo, M. L. M. (2016). Temporal and spatial accumulation of heavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environmental Earth Sciences, 75, 9.

  • CCME, Canadian Council of Ministers of the Environment. (1999). Protocol for the derivation of Canadian Sediment quality guidelines for the protection of aquatic life- CCME EPC-98E (p. 35). Ottawa: Environment Canada, Guideline Division, Technical Secretariat of the CCME Task Group on Water Quality Guidelines.

  • Chapman, P. M., Wang, F., Adams, W. J., & Green, A. (1999). Appropriate applications of sediment quality values for metals and metalloids. Environ Sci Technol, 33(22), 3937–3941.

    Article  CAS  Google Scholar 

  • De Jonge, M., Dreesen, F., Paepe, J., Blust, R., & Bervoets, L. (2009). Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions? Environ Sci Technol, 43, 4510–4516.

    Article  Google Scholar 

  • De Jonge, M., Teuchies, J., Meire, P., Blust, R., & Bervoets, L. (2012a). The impact of increased oxygen conditions on metal contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res, 46, 2205–2214.

    Article  Google Scholar 

  • De Jonge, M., Teuchies, J., Meire, P., Blust, R. & Bervoets, L. (2012b). The impact of increased oxygen conditions on metal contaminated sediments part II: effects on metal accumulation and toxicity in aquatic invertebrates. Water research, 46, 3387–3397

  • Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., & Redmon, M. S. (1990). Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem, 9, 1487–1502.

    Article  Google Scholar 

  • Di Toro, D. M., Zarba, C. S., Hansen, D. J., Berry, W. J., Swartz, R. C., Cowan, C. E., Pavlou, S. P., Allen, H. E., Thomas, N. A., & Paquin, P. R. (1991). Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem, 10, 1541–1583.

    Article  Google Scholar 

  • Fang, T. L., & Zhang, G. (2005). Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicol Environ Saf, 61, 420–431.

    Article  CAS  Google Scholar 

  • Fonseca, A. C. (1997). Avaliação da qualidade da água na Bacia do Rio Piracicaba/SP através de toxicidade com invertebrados. São Carlos: Tese de Doutorado.

    Google Scholar 

  • Förstner, U., & Wittmann, G. T. W. (1981). Metal pollution in the aquatic environment (p. 486). New York: Springer-Verlag.

    Book  Google Scholar 

  • Garcia, C. A. B., Passos, E. A., & Alves, J. P. H. (2011). Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM–ERL predictions. Environ Monit Assess, 181, 385–397.

    Article  CAS  Google Scholar 

  • Giatti, L. L. (2000). Reservatório Paiva Castro- Mairiporã- SP- Avaliação da qualidade da água sobre alguns parâmetros físicos, químicos e biológicos (1987–1998) (p. 87). São Paulo: FSP, USP.

    Google Scholar 

  • Griethuysen, C. V., Lange, H. J. D., Van Den Heuij, M., Bies, S. C. D., Gillissen, F., & Koelmans, A. A. (2006). Temporal dynamics of AVS and SEM in sediment of shallow freshwater floodplain lakes. Appl Geochem, 21, 632–642.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontol Electro, 4(1), 9.

    Google Scholar 

  • He, J., Lu, C., Fan, Q., Xue, H., & Bao, J. (2011). Distribution of AVS-SEM, transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in China. Environ Earth Sci, 64, 2025–2037.

    Article  CAS  Google Scholar 

  • Hübner, R., Astin, K. B., & Herbert, J. H. (2009). Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. J Environ Monit, 11, 713–722.

    Article  Google Scholar 

  • Huerta-Diaz, M. A., Carlgnan, R., & Tessier, A. (1993). Measurement of trace metals associated with acid volatile sulfides and pyrite in organic freshwater sediments. Environ Sci Tech, 27, 2367–2372.

    Article  CAS  Google Scholar 

  • Jacob, D. L., Yellick, A. H., Kissoon, L. T. T., Asgary, A., Wijeyaratne, D. N., Saini-Eidukat, B., & Otte, M. L. (2013). Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA. Environ Pollut, 178, 211–219.

    Article  CAS  Google Scholar 

  • Lee, J. S., Byeong-Gweon, L., Luoma, S. N., Choi, H. J., Koh, C., & Brown, C. L. (2000). Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments. Environ Sci Tech, 34, 4511–4516.

    Article  CAS  Google Scholar 

  • Legendre, P. & Legendre, L. (1998). Numerical Ecology (p. 853). Amsterdam: Elsevier Science.

  • López-Doval, J.; Meirelles; Cardoso-Silva, S.; Moschini-Carlos, V.; Pompeo, M. L. M. (2016). Ecological and toxicological responses in a multistressor scenario: are monitoring programs showing the stressors or just showing stress? A case study in Brazil. Science of the Total Environment, 540, 466–476.

  • López, P., Dolz, J., Arbat, M., & Armengol, J. (2012). Physical and chemical characterisation of superficial sediment of the Ribarroja Reservoir (River Ebro, NE Spain). Limnetica, 31, 327–340.

    Google Scholar 

  • Luoma, S. N., & Rainbow, P. S. (2008). Metal Contamination in Aquatic Environments: Science and Lateral Management (p. 573). Cambridge: Cambridge University.

    Google Scholar 

  • Mariani, C. F., & Pompêo, M. L. M. (2008). Potentially bioavailability metals in sediment from a tropical polymictic environment Rio Grande Reservoir, Brazil. J Soils Sediments, 8, 284–288.

    Article  CAS  Google Scholar 

  • Meguro, M. (2000). Métodos em Ecologia (p. 117). São Paulo: Apostila de Metodologias para a disciplina BIE - 321 Ecologia Vegetal - Instituto de Biociências, USP.

    Google Scholar 

  • Mortvedt, J. J. (1996). Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Res, 43, 55–61.

    Article  Google Scholar 

  • Mozeto, A. A., Umbuzeiro, G. A., Araújo, R. P. A., & Jardim, W. F. (2006). Esquema de Avaliação Integrada e Hierárquica da Qualidade de Sedimentos (AIHQS). In A. A. Mozeto, G. A. Umbuzeiro, & W. F. Jardim (Eds.), Métodos de coleta, análises físico-químicas e ensaios biológicos e ecotoxicológicos de sedimentos de água doce (pp. 195–221). São Carlos: Cubo.

    Google Scholar 

  • Nascimento, M. R. L., & Mozeto, A. (2008). Reference values for metals and metalloids concentration in botton sediments of Tietê river basin, soutjeast of Brasil. Soil Sediment Contam Int J, 17(3), 269–278.

    Article  CAS  Google Scholar 

  • Nizoli, E., & Luiz-Silva, W. (2012). Seasonal AVS–SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil. Environ Geochem Health, 34(2), 263–72.

    Article  CAS  Google Scholar 

  • Piper, C. S. (1947). Soil and Plant Analysis: Laboratory Manual of Methods for the Examination of Soils and the Determination of the Inorganic Constituents of Plants. New York: Interscience publishers.

  • Pompêo, M. L. M., Padial, P. R., Mariani, C. F., Cardoso-Silva, S., Moschini-Carlos, V., Silva, D. C. V. R., Paiva, T. C. B., & Brandimarte, A. L. (2013). Biodisponibilidade de metais no sedimento de um reservatório tropical urbano (reservatório Guarapiranga – São Paulo (SP), Brasil): Há toxicidade potencial e heterogeneidade espacial? Geochim Bras, 27(2), 104–119.

    Article  Google Scholar 

  • Prica, M., Dalmacija, B., Rončević, S., Krčmar, D., & Bečelić, M. (2008). A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Sci Total Environ, 389, 235–244.

    Article  CAS  Google Scholar 

  • Prica, M., Dalmacija, B., Dalmacija, M., Agbaba, J., Krcmar, D., Trickovic, J., & Karlovic, E. (2010). Changes in metal availability during sediment oxidation and the correlation with the immobilization potential. Ecotoxicol Environ Saf, 73, 1370–1377.

    Article  CAS  Google Scholar 

  • Silva, D. C. V. R. (2013). Toxicidade potencial da água e sedimento de reservatórios da região metropolitana de São Paulo (represas Billings, Guarapiranga e Paiva Castro). 2013. Master thesis. São Paulo: Universidade de São Paulo.

    Google Scholar 

  • Silva, E. A. S. (2002). Eutrofização no Reservatório Paiva Castro do sistema Cantareira na Região Metropolitana de São Paulo (1987–1997) (p. 135). São Paulo: FSP- USP.

    Google Scholar 

  • Silvério, P. F., Fonseca, A. L., Botta-Paschoal, C. M. R., & Mozeto, A. A. (2005). Release, bioavailability and toxicity of metals in lacustrine sediments: a case study of reservoirs and lakes in Southeast Brazil. Aquat EcosystHealth Manag, 8, 313–322.

    Article  Google Scholar 

  • Simpson, S. L., Ward, D., Stroma, D., & Jolley, D. F. (2012). Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. Chemosphere, 88, 953–961.

    Article  CAS  Google Scholar 

  • Thorton, K. W. (1990). Perspectives on reservoir limnology. In: Thorton K.W., Kimmel B.L., Payne F.E. (Eds.), Reservoir limnology: ecological perspectives (pp 1–13). New York: Wiley.

  • US EPA, & United States Environmental Protection Agency. (2005). Procedure for the derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (cadmium, cooper, lead, nickel, silver and zinc) (p. 121). Washington: Office of Research and Development. EPA-600-R-02-011.

    Google Scholar 

  • Velimirović, B., Prica, M. D., Dalmacija, B. D., Rončević, S. D., Dalmacija, M. B., Bečelić, M. D., & Tričković, J. S. (2011). Characterisation, availability, and risk assessment of the metals in sediment after aging milica. Water Air Soil Pollut, 214, 219–229.

    Article  Google Scholar 

  • Vymazal, J. & Švehla, J. (2013). Iron and manganese in sediments of constructed wetlands with horizontal subsurface flow treating municipal sewage. Ecological Engineering, 50, 60–75.

  • Whately, M., & Cunha, P. M. (2007). Cantareira 2006: Um olhar sobre o maior manancial de água da Região Metropolitana de São Paulo- Resultados do Diagnóstico Socioambiental Participativo do Sistema Cantareira (p. 68). São Paulo: Instituto Sócio Ambiental.

    Google Scholar 

  • Yin, H., & Fan, C. (2011). Dynamics of reactive sulfide and its control on metal bioavailability and toxicity in metal-polluted sediments from Lake Taihu, China. Arch Environ Containation Toxicol, 60, 565–575.

    Article  CAS  Google Scholar 

  • Younis, A. M., El-Zokm, G. M., & Okbah, M. A. (2014). Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments. Environ Monit Assess, 186, 3567–3579.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Ecology Department of the Institute of Biosciences, University of São Paulo. Financial support for this work has been provided by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), grant 470443/2008-1; scholarships were provided by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for Sheila Cardoso-Sillva, Daniel C.V.R. Silva, and Fernanda Lage and by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for Sheila Cardoso-Silva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Cardoso-Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Informed consent was obtained from all authors involved in this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso-Silva, S., Da Silva, D.C.V.R., Lage, F. et al. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply. Environ Monit Assess 188, 310 (2016). https://doi.org/10.1007/s10661-016-5276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5276-5

Keywords

Navigation