Skip to main content

Cadmium

  • Chapter
  • First Online:
Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

Cadmium (Cd) is naturally present in soils at concentrations 0.1–1 mg Cd kg−1. Cadmium is readily available for uptake by food crops and food chain contamination with Cd from contaminated soil has led to effects on kidney functioning in humans, even reaching fatal levels in subsistence farmers who consumed rice from a contaminated area in Japan. Diffuse Cd sources, notably P-fertilisers and atmospheric depositions have increased soil Cd concentrations by about 0.1–0.3 mg Cd kg−1 above pre-industrial levels and actions have been taken worldwide to limit Cd emissions or Cd exposure to humans. Emissions of Zn–Cd smelters have been cut in numerous places but residual soil Cd contamination is still present. Cadmium retention in soil is controlled by sorption reactions and soil pH is the main determinant. Soil Cd availability for crop uptake varies by about a factor 10 among soils and generally increases 1.5-fold by decreasing soil pH with one unit. Crops differ in Cd uptake and hard wheat and potatoes have a considerable impact on the dietary Cd intake. Contrasting views exist on the food chain risk of Cd as both soil Cd and food Cd bioavailability may have been larger in the Japanese case study than in the general environment. In Europe, a generic Cd risk assessment in 2007 led to the conclusion that risk cannot be excluded for the general population environmentally exposed to Cd. However, limits on P fertilisers, as main determinants of Cd emissions, are not yet in place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M. L., Zhao, F. J., Mcgrath, S. P., Nicholson, F. A., & Chambers, B. J. (2004). Predicting cadmium concentrations in wheat and barley grain using soil properties. Journal of Environmental Quality, 33(2), 532–541.

    Article  CAS  Google Scholar 

  2. Baize, D. (1997). Teneurs totales en éléments traces métalliques dans le sols (France). Paris: Institut National de la Récherche Agronomique.

    Google Scholar 

  3. Barrett, K. A., & McBride, M. B. (2007). Dissolution of zinc-cadmium sulfide solid solutions in aerated aqueous suspension. Soil Science Society of American Journal, 71(2), 322–328.

    Article  CAS  Google Scholar 

  4. Basta, N. T., Ryan, J. A., & Chaney, R. L. (2005). Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. Journal of Environmental Quality, 34(1), 49–63.

    CAS  Google Scholar 

  5. Berglund, M., Akesson, A., Nermell, B., & Vahter, M. (1994). Intestinal absorption of dietary cadmium in women depends on body iron stones and fiber intake. Environmental Health Perspectives, 102, 1058–1066.

    Article  CAS  Google Scholar 

  6. Beyer, W. N. (2000). Hazards to wildlife from soil-borne cadmium reconsidered. Journal of Environmental Quality, 29(5), 1380–1384.

    Article  CAS  Google Scholar 

  7. Boekhold, A. E., & Van der Zee, S. E. A. T. M. (1992). Significance of soil chemical heterogeneity for spatial behavior of cadmium in field soils. Soil Science Society of American Journal, 56, 747–754.

    Article  CAS  Google Scholar 

  8. Brown, S. L., Chaney, R. L., Angle, J. S., & Ryan, J. A. (1998). The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils. Journal of Environmental Quality, 27, 1071–1078.

    Article  CAS  Google Scholar 

  9. Brown, S., Christensen, B., Lombi, E., McLaughlin, M., McGrath, S., Colpaert, J., et al. (2005). An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environmental Pollution, 138(1), 34–45.

    Article  CAS  Google Scholar 

  10. Buekers, J., Degryse, F., Maes, A., & Smolders, E. (2008). Modelling the effects of ageing on Cd, Zn, Ni and Cu solubility in soils using an assemblage model. European Journal of Soil Science, 59(6), 1160–1170.

    Article  CAS  Google Scholar 

  11. Chen, J. S., Wei, F. S., Zheng, C. J., Wu, Y. Y., & Adriano, D. C. (1991). Background concentrations of elements in soils of China. Water, Air, and Soil Pollution, 57–58, 699–712.

    Article  Google Scholar 

  12. Chen, W., Li, L., Chang, A. C., Wu, L., Chaney, R. L., Smith, R., et al. (2009). Characterizing the solid-solution partitioning coefficient and plant uptake factor of As, Cd, and Pb in California croplands. Agriculture, Ecosystems and Environment, 129, 212–220.

    Article  CAS  Google Scholar 

  13. Christensen, T. H. (1984). Cadmium soil sorption at low concentrations. II. Reversibility, effect of changes in solute composition, and effect of soil aging. Water, Air, and Soil Pollution, 21(1–4), 115–125.

    Article  CAS  Google Scholar 

  14. Christensen, T. H. (1984). Cadmium soil sorption at low concentrations. I.Effect of time, cadmium load, pH, and calcium. Water, Air, and Soil Pollution, 21(1–4), 105–114.

    Article  CAS  Google Scholar 

  15. de Groot, A. C., Peijnenburg, W. J. G. M., van den Hoop, M. A. G. T., Ritsema, R., & van Veen, R. P. M. (1998). Heavy metals in Dutch field soils: An experimental and theoretical study on equilibrium partitioning (No. 607220 001). Bilthoven: National Institute of Public Health and the Environment.

    Google Scholar 

  16. Degryse, F., Broos, K., Smolders, E., & Merckx, R. (2003). Soil solution concentration of Cd and Zn can be predicted with a CaCl2 soil extract. European Journal of Soil Science, 54(1), 149–157.

    Article  CAS  Google Scholar 

  17. Degryse, F., Smolders, E., & Parker, D. R. (2009). Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – A review. European Journal of Soil Science, 60(4), 590–612.

    Article  CAS  Google Scholar 

  18. Eriksson, J., Öborn, I., Jansson, G., & Andersson, A. (1996). Factors influencing Cd-content in crops. Results from Swedish field investigations. Swedish Journal of Agricultural Research, 26, 125–133.

    CAS  Google Scholar 

  19. EU. (2007). European Union risk assessment report. Cadmium metal. Part I environment (Vol. 72). Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  20. EU. (2007). European Union risk assessment report. Cadmium metal. Part II human health (Vol. 74). Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  21. Farrah, H., Hatton, D., & Pickering, W. F. (1980). Affinity of metal-ions for clay surfaces. Chemical Geology, 28(1–2), 55–68.

    Article  CAS  Google Scholar 

  22. Friberg, L., & Elinder, C. G. (1992). Cadmium. Geneva: World Health Organization.

    Google Scholar 

  23. Fukushima, M., Ishizaki, A., Sakamoto, M., & Kobayashi, E. (1973). Cadmium concentration in rice eaten by farmers in the Jinzu River basin (in Japanese). Japanese Journal of Hygiene, 28, 406–415.

    Article  CAS  Google Scholar 

  24. Garrett, R. G., Porter, A. R. D., & Hunt, P. A. (2010). An occurrence of cadmiferous phosphorite soil concretions in Jamaica. Applied Geochemistry, 25(7), 1047–1055.

    Article  CAS  Google Scholar 

  25. Grant, C. A., Clarke, J. M., Duguid, S., & Chaney, R. L. (2008). Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 390(2–3), 301–310.

    Article  CAS  Google Scholar 

  26. Grosbois, C., Meybeck, A., Horowitz, A., & Ficht, A. (2006). The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994–2000). Science of the Total Environment, 356(1–3), 22–37.

    Article  CAS  Google Scholar 

  27. Harrison, R. M., & Chirgawi, M. B. (1989). The assessment of air and soil as contributors of some trace metals to vegetable plants. I. Use of a filtered air growth cabinet. Science of the Total Environment, 83, 13–34.

    Article  CAS  Google Scholar 

  28. Hatch, D. J., Jones, L. H. P., & Burau, R. G. (1988). The effect of pH on the uptake of cadmium by four plant species grown in flowing solution culture. Plant and Soil, 105, 121–126.

    Article  CAS  Google Scholar 

  29. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22(2), 335–348.

    Article  CAS  Google Scholar 

  30. Hooda, P. S., McNulty, D., Alloway, B. J., & Aitken, M. N. (1997). Plant availability of heavy metals in soils previously amended with heavy applications sewage sludge. Journal of the Science of Food and Agriculture, 73, 446–454.

    Article  CAS  Google Scholar 

  31. Hough, R. L., Tye, A. M., Crout, N. M. J., McGrath, S. P., Zhang, H., & Young, S. D. (2005). Evaluating a ‘Free Ion Activity Model’ applied to metal uptake by Lolium perenne L. grown in contaminated soils. Plant and Soil, 270(1–2), 1–12.

    Article  CAS  Google Scholar 

  32. Inaba, T., Kobayashi, E., Suwazono, Y., Uetani, M., Oishi, M., Nakagawa, H., et al. (2005). Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicology Letters, 159(2), 192–201.

    Article  CAS  Google Scholar 

  33. Jansson, G., Smolders, E., Ruttens, A., Römkens, P., De Temmerman, L., & Bries, J. (2007). Teeltadvies voor de landbouw in kader van het Interreg project BeNeKempen (Final Report). Mechelen: OVAM.

    Google Scholar 

  34. JECFA. (2010). Joint FAO/WHO Expert Committee on Food Additives seventy-third meeting. From http://www.who.int/foodsafety/publications/chem/summary73.pdf

  35. Keller, C., Hammer, D., Kayser, A., Richner, W., Brodbeck, M., & Sennhauser, M. (2003). Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant and Soil, 249(1), 67–81.

    Article  CAS  Google Scholar 

  36. Lalor, G. C. (2008). Review of cadmium transfers from soil to humans and its health effects in the Jamaican environment. Science of the Total Environment, 400(1–3), 162–172.

    Article  CAS  Google Scholar 

  37. Lalor, G. C., Rattray, R., Robotham, H., & Thompson, C. (1995). A geochemical atlas of Jamaica. Kingston: Canoe Press, University of the West Indies.

    Google Scholar 

  38. Larison, J. R., Likens, G. E., Fitzpatrick, J. W., & Crock, J. G. (2000). Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature, 406(6792), 181–183.

    Article  CAS  Google Scholar 

  39. Li, Y.-H., Chaney, R. L., & Schneiter, A. A. (1994). Effect of soil chloride level on cadmium concentration in sunflower kernels. Plant and Soil, 167, 275–280.

    Article  CAS  Google Scholar 

  40. Li, Y. M., Chaney, R. L., Schneiter, A. A., Miller, J. F., Elias, E. M., & Hammond, J. J. (1997). Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica, 94(1), 23–30.

    Article  CAS  Google Scholar 

  41. McKenna, I. M., Chaney, R. L., & Williams, F. M. (1993). The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environmental Pollution, 79(2), 113–120.

    Article  CAS  Google Scholar 

  42. McLaughlin, M. J., Palmer, L. T., Tiller, K. G., Beech, T. A., & Smart, M. K. (1994). Increased soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Journal of Environmental Quality, 23, 1013–1018.

    Article  CAS  Google Scholar 

  43. McLaughlin, M. J., Tiller, K. G., Naidu, R., & Stevens, D. P. (1996). Review: The behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34, 1–54.

    Article  CAS  Google Scholar 

  44. McLaughlin, M. J., Whatmuff, M., Warne, M., Heemsbergen, D., Barry, G., Bell, M., et al. (2006). A field investigation of solubility and food chain accumulation of biosolid-cadmium across diverse soil types. Environmental Chemistry, 3(6), 428–432.

    Article  CAS  Google Scholar 

  45. McLaughlin, M. J., Smolders, E., Degryse, F., & Rietra, R. (2011). Uptake of metals into vegetables. In F. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application. Dordrecht: Springer.

    Google Scholar 

  46. Mortvedt, J. J., Mays, D. A., & Osborn, G. (1981). Uptake by wheat of cadmium and other heavy metal contaminants in phosphate fertilizers. Journal of Environmental Quality, 10, 193–197.

    Article  CAS  Google Scholar 

  47. Nordberg, G. F. (2009). Historical perspectives on cadmium toxicology. Toxicology and Applied Pharmacology, 238(3), 192–200.

    Article  CAS  Google Scholar 

  48. Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390(1), 53–57.

    Article  CAS  Google Scholar 

  49. Peles, J. D., Brewer, S. R., & Barrett, G. W. (1996). Metal uptake by agricultural plant species grown in sludge-amended soil following ecosystem restoration practices. Bulletin of Environmental Contamination and Toxicology, 57, 917–923.

    Article  CAS  Google Scholar 

  50. Provoost, J., Cornelis, C., & Swartjes, F. (2006). Comparison of soil clean-up standards for trace elements between countries: Why do they differ? Journal of Soils and Sediments, 6(3), 173–181.

    Article  CAS  Google Scholar 

  51. Reid, R. J., Dunbar, K. R., & McLaughlin, M. J. (2003). Cadmium loading into potato tubers: The roles of the periderm, xylem and phloem. Plant, Cell & Environment, 26(2), 201–206.

    Article  CAS  Google Scholar 

  52. Salminen, R. (Ed.). (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  53. Smolders, E., Lambregts, R. M., McLaughlin, M. J., & Tiller, K. G. (1998). Effect of soil chloride on cadmium availability to Swiss chard. Journal of Environmental Quality, 27, 426–431.

    Article  CAS  Google Scholar 

  54. Smolders, E., Brans, K., Foldi, A., & Merckx, R. (1999). Cadmium fixation in soils measured by isotopic dilution. Soil Science Society of American Journal, 63(1), 78–85.

    Article  CAS  Google Scholar 

  55. Sparrow, L. A., Salardini, A. A., & Bishop, A. C. (1993). Field studies of cadmium in potatoes (Solanum tuberosum L.). I. Effects of lime and phosphorus on cv. Russet Burbank. Australian Journal of Agricultural Research, 44, 845–853.

    Article  CAS  Google Scholar 

  56. Sterckeman, T., Perriguey, J., Cael, M., Schwartz, C., & Morel, J. L. (2004). Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: Consequences for the assessment of the soil quantity and capacity factors. Plant and Soil, 262(1–2), 289–302.

    Article  CAS  Google Scholar 

  57. Traina, S. J. (1999). The environmental chemistry of cadmium. In M. J. McLaughlin & B. R. Singh (Eds.), Cadmium in soils and plants (pp. 11–37). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  58. Tye, A. M., Young, S. D., Crout, N. M. J., Zhang, H., Preston, S., Barbosa-Jefferson, V. L., et al. (2003). Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction. Geochimica et Cosmochimica Acta, 67, 375–385.

    Article  CAS  Google Scholar 

  59. Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., et al. (2010). Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16500–16505.

    Article  CAS  Google Scholar 

  60. Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., & Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60(9), 2677–2688.

    Article  CAS  Google Scholar 

  61. USEPA. (2005). Ecological soil screening levels for Cadmium (Interim Final, OSWER Directive 9285.7-65). Washington: United States Environmental Protection Agency.

    Google Scholar 

  62. Williams, C. H., & David, D. J. (1974). The accumulation in soil of cadmium residues from phosphate fertilizers and their effects on the cadmium content of plants. Soil Science, 121, 86–93.

    Article  Google Scholar 

  63. World Bureau of Metal Statistics (2009). World Nickel/Tin/Cadmium statistics- Cadmium. World Bureau of Metal Statistics, UK: Hertfordshire.

    Google Scholar 

  64. Zhao, F. J., McGrath, S. P., & Merrington, G. (2007). Estimates of ambient background concentrations of trace metals in soils for risk assessment. Environmental Pollution, 148(1), 221–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Smolders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smolders, E., Mertens, J. (2013). Cadmium. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_10

Download citation

Publish with us

Policies and ethics