Skip to main content
Log in

Seasonal AVS–SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In anoxic sediments, as those found in estuaries, the mobility of metals can be controlled by the formation of stable sulfide complexes. The potential bioavailability of a metal can then be predicted on the basis of the acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) criterion. Distributions of AVS and SEM (Hg, Cu, Pb, Cd, Zn, and Ni) along the sediment profiles were determined seasonally for three rivers that constitute the Santos-Cubatão estuarine system (SE Brazil), which is located in one of the most industrialized areas of Latin America. AVS and SEM concentrations varied significantly, from 0.04 to 31.9 μmol g−1 and 0.086–6.659 μmol g−1, respectively. The highest AVS levels in sediments were detected in the winter, whereas high SEM values predominated in the summer. Considering SEM–AVS molar differences as a parameter to evaluate potential bioavailability, sediments nearest to the industrial area represent higher risk to biota, especially during the summer. It is due to relatively low AVS values and not necessarily high concentrations of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, H. E., Fu, G., & Deng, B. (1993). Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 12, 1441–1453.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Di Toro, D. M., Hansen, D. J., & Berry, W. J. (1996). Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 15, 2056–2066.

    Article  CAS  Google Scholar 

  • Boothman, W. S., Hansen, D. J., Berry, W. J., Robson, D. L., Helmstetter, A., Corbin, J. M., et al. (2001). Biological response to variation of acid-volatile sulfides and metals in field-exposed spiked sediments. Environmental Toxicology and Chemistry, 20(2), 264–272.

    Article  CAS  Google Scholar 

  • Burton, E. D., Bush, R. T., & Sullivan, L. A. (2006). Fractionation and extractability of sulfur, iron and trace elements in sulfidic sediments. Chemosphere, 64, 1421–1428.

    Article  CAS  Google Scholar 

  • Calmano, W., Hong, J., & Forstner, U. (1993). Binding and mobilization of heavy-metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28, 223–235.

    CAS  Google Scholar 

  • Campana, O., Rodríguez, A., & Blasco, J. (2005). Bioavailability of heavy metals in the Guadalete River estuary. Ciencias Marinas, 31, 135–147.

    CAS  Google Scholar 

  • Campana, O., Rodriguez, A., & Blasco, J. (2009). Identification of a potential toxic hot spot associated with AVS spatial and seasonal variation. Archives of Environmental Contamination and Toxicology, 56(3), 416–425.

    Article  CAS  Google Scholar 

  • Chapman, P. M., Wang, F. Y., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 55, 2221–2243.

    Article  CAS  Google Scholar 

  • Chen, F., Yang, Y., Zhang, D., & Zhang, L. (2006). Metals associated with reduced sulfur in sediments from different deposition environments in the Pearl River estuary, China. Environmental Geochemistry and Health, 28(3), 265–272.

    Article  CAS  Google Scholar 

  • Cooper, D. C., & Morse, J. W. (1998). Extractability of metal sulfide minerals in acidic solutions: Application to environmental studies of trace metal contamination within anoxic sediments. Environmental Science and Technology, 32, 1076–1078.

    Article  CAS  Google Scholar 

  • Di Toro, D. M., Mahony, J. D., Hansen, D. J., & Berry, W. J. (1996). A model of the oxidation of iron and cadmium sulfide in sediments. Environmental Toxicology and Chemistry, 15, 2168–2186.

    Article  CAS  Google Scholar 

  • Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., et al. (1990). Toxicity of cadmium in sediments: The role of acid volatile sulfide. Environmental Toxicology and Chemistry, 9, 1487–1502.

    Article  CAS  Google Scholar 

  • Fang, T., Li, X., & Zhang, G. (2005). Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 61, 420–431.

    Article  CAS  Google Scholar 

  • Han, J., Ma, D., Wang, J., & Yan, Q. (2005). Bioavailability of zinc in the sediment to the estuarine amphipod Grandidierella japonica. Hydrobiologia, 541, 149–154.

    Article  CAS  Google Scholar 

  • Hartwell, S. I., Dawson, C. E., Durell, E. Q., Alden, R. W., Adolphson, P. C., Wright, D. A., et al. (1998). Integrated measures of ambient toxicity and fish community diversity in Chesapeake Bay tributaries. Ecotoxicology, 7, 19–35.

    Article  CAS  Google Scholar 

  • Hinkey, L. M., & Zaidi, B. R. (2007). Differences in SEM-AVS and ERM-ERL predictions of sediment impacts from metals in two US Virgin Islands marinas. Marine Pollution Bulletin, 54, 180–185.

    Article  CAS  Google Scholar 

  • Klumpp, A., Domingos, M., & Klumpp, G. (1996). Assessment of the vegetation risk by fluoride emissions from fertiliser industries at Cubatão, Brazil. Science of the Total Environment, 192, 219–228.

    Article  CAS  Google Scholar 

  • Lau, S. S. S. (2000). The significance of temporal variability in sediment quality for contamination assessment in a coastal wetland. Water Research, 34, 387–394.

    Article  CAS  Google Scholar 

  • Lee, B. G., Griscom, S. B., Lee, J. S., Choi, H. J., Koh, C. H., Luoma, S. N., et al. (2000). Influence of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science (Washington, DC, U. S.), 287, 282–284.

    Article  CAS  Google Scholar 

  • Leonard, E. N., Mattson, V. R., Benoit, D. A., Hoke, R. A., & Ankley, G. T. (1993). Seasonal variations of acid-volatile sulfide concentration in sediment cores from three north eastern Minnesota lakes. Hydrobiologia, 271, 87–95.

    Article  CAS  Google Scholar 

  • Luiz-Silva, W., Machado, W., & Matos, R. H. (2008). Multi-elemental contamination and historic record in sediments from the Santos-Cubatão estuarine system. Brazil Journal of the Brazilian Chemical Society, 19, 1490–1500.

    Article  CAS  Google Scholar 

  • Luiz-Silva, W., Matos, R. H. R., & Kristosch, G. C. (2002). Geoquímica e índice de geoacumulação de mercúrio em sedimentos de superfície do estuário de Santos-Cubatão (SP). Química Nova, 25, 753–756.

    Article  CAS  Google Scholar 

  • Luiz-Silva, W., Matos, R. H. R., Kristosch, G. C., & Machado, W. (2006). Variabilidade espacial e sazonal da concentração de elementos-traços em sedimentos do sistema estuarino de Santos-Cubatão (SP). Química Nova, 29, 256–263.

    Article  CAS  Google Scholar 

  • Machado, W., Carvalho, M. F., Santelli, R. E., & Maddock, J. E. L. (2004). Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Marine Pollution Bulletin, 49, 89–92.

    Article  CAS  Google Scholar 

  • Marins, R. V., Paula Filho, F. J., Maia, S. R. R., Lacerda, L. D., & Marques, W. S. (2004). Distribuição de mercúrio total como indicador de poluição urbana e industrial na costa brasileira. Química Nova, 27, 763–770.

    Article  CAS  Google Scholar 

  • McGrath, A., Paquin, P. R., Di Toro, D. M. (2002). Use of the SEM and AVS approach in predicting metal toxicity in sediments. In Fact sheet on environmental risk assessment (Vol. 10, pp. 1–7). International Council on Mining and Metal, London, UK.

  • Meyer, S. F., & Gersberg, R. M. (1997). Heavy metals and acid-volatile sulfides in sediments of the Tijuana Estuary. Bulletin of Environmental Contamination and Toxicology, 59, 113–119.

    Article  CAS  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature (London, UK), 403, 853–858.

    Article  CAS  Google Scholar 

  • Nizoli, E. C., & Luiz-Silva, W. (2009). O papel dos sulfetos volatilizados por acidificação no controle do potencial de biodisponibilidade de metais em sedimentos contaminados de um estuário tropical, no sudeste do Brasil. Química Nova, 32(2), 365–372.

    Article  CAS  Google Scholar 

  • Otero, X. L., Ferreira, T. O., Vidal-Torrado, P., & Macías, F. (2006). Spatial variation in pore water geochemistry in a mangrove system (Pai Matos island, Cananeia-Brazil). Applied Geochemistry, 21, 2171–2186.

    Article  CAS  Google Scholar 

  • SEPESP. (2007). Região Metropolitana da Baixada Santista. São Paulo, SP. Secretaria de Economia e Planejamento do Estado de São Paulo.

  • Sholkovitz, E. R., & Szymczak, R. (2000). The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems. Earth and Planetary Science Letters, 179, 299–309.

    Article  CAS  Google Scholar 

  • Van Griethuysen, C., Lange, H. J., Van den Heuij, M., Bies, S. C., Gillissen, F., & Koelmans, A. A. (2006). Temporal dynamics of AVS and SEM in sediment of shallow freshwater floodplain lakes. Applied Geochemistry, 21, 632–642.

    Article  Google Scholar 

  • Warnken, K. W., Gill, G. A., Griffin, L. L., & Santschi, P. H. (2001). Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Marine Chemistry, 73, 215–231.

    Article  CAS  Google Scholar 

  • Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35, 4086–4094.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank São Paulo Research Foundation (FAPESP) for financial support (processes no 04/00059-6 and 08/11511-8) and National Council for Scientific and Technological Development (CNPq) for providing scholarships to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erico Casare Nizoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nizoli, E.C., Luiz-Silva, W. Seasonal AVS–SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil. Environ Geochem Health 34, 263–272 (2012). https://doi.org/10.1007/s10653-011-9430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-011-9430-2

Keywords

Navigation