Skip to main content
Log in

Factors controlling denitrification of mudflat sediments in Ariake Bay, Japan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To investigate the seasonal variation of denitrification rate (DR) and clarify the controlling factors of denitrification in the mudflat sediments of Ariake Bay, we conducted field surveys biweekly each month from April 2006 to January 2008. NH4 +-N porewater concentration increased from summer to autumn due to the organic material mineralization under higher sediment temperatures. The seasonal pattern of NH4 +-N flux between sediments and overlying water interface indicated that the mudflat sediments were a source of NH4 +-N in summer. NO3 +NO2 -N porewater concentrations were low, ranging from 0.53 to 11.46 μM, and mudflat sediments were sinks of NO3 +NO2 -N throughout the year. The mean number of denitrifiers tended to increase in July–September (2188–75,057 MPN g−1) and to decrease in March–May (500–3740 MPN g−1). DR tended to increase in summer, ranging from 76.03 to 990.21 μmol m−2 day−1, and to decrease in winter, ranging from 25.01 to 206.07 μmol m−2 day−1. There was no significant correlation between DR and denitrifier number. Environmental factors influencing DR during the investigation period were determined by multiple regression analysis with the stepwise method. The results indicated that NO3 +NO2 -N flux was an important factor in denitrification of mudflat sediments in Ariake Bay. Denitrification was depended on nitrate diffusing from overlying water into sediments under reduced sediment conditions during summer-mid-autumn. On the other hand, in late autumn-winter at Eh>+200 mV and sediment temperature >10 °C, nitrate produced by sediment nitrification was thought to be denitrified subsequently; that is, the coupled nitrification-denitrification may have taken place in the upper layer of mudflat sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anniet, M. L., Christof, M., Philippe, V. C., & Elze, B. A. W. (2007). Vertical distribution of denitrification in an estuarine sediment: integrating sediment flow through reactor experiments and microprofiling via reactive transport modeling. Applied and Environmental Microbiology, 73(1), 40–47.

    Article  Google Scholar 

  • Azad, K., Ohira, S., Oda, M., & Toda, K. (2005). On-site measurements of hydrogen sulfide and sulfur dioxide emissions from tidal flat sediments of Ariake Sea, Japan. Atmospheric Environment, 39, 6077–6087.

    Article  CAS  Google Scholar 

  • Billen, G. (1975). Nitrification in the Scheldt estuary (Belgium and the Netherlands). Estuarine and Coastal Marine Science, 3, 79–89.

    Article  CAS  Google Scholar 

  • Capone, D. G., & Knapp, A. N. (2007). A marine nitrogen cycle fix? Nature, 445, 159–160.

    Article  CAS  Google Scholar 

  • Carpenter, E. J., & Capone, D. G. (2008). Nitrogen fixation in the marine environment. In D. G. Capone, D. A. Bronk, M. R. Mulholland, & E. J. Carpenter (Eds.), Nitrogen in the marine environment (pp. 141–198). San Diego: Academic Press, Elsevier.

    Chapter  Google Scholar 

  • Dodds, W. K., & Jones, R. D. (1987). Potential rates of nitrification and denitrification in an Oligotrophic freshwater sediment system. Microbial Ecology, 14, 91–100.

    Article  CAS  Google Scholar 

  • Dong, L. F., Thornton, D. C. O., Nedwell, D. B., & Underwood, G. J. C. (2000). Denitrification in sediments of the River Colne estuary, England. Marine Ecology Progress Series, 203, 109–122.

    Article  CAS  Google Scholar 

  • Fan, L. F., Shieh, W. Y., Wu, W. F., & Chen, C. P. (2006). Distribution of nitrogenous nutrients and denitrifiers strains in estuarine sediment profiles of the Tanshui River, northern Taiwan. Estuarine, Coastal and Shelf Science, 69, 543–553.

    Article  Google Scholar 

  • Fennel, K., Brady, D., DiToro, D., Fulweiller, R. W., Gardner, W. S., Giblin, A., McCarthy, M. J., Rao, A., Seitzinger, S., Thouvenot-Korppoo, M., & Tobias, C. (2008). Modeling denitrification in aquatic sediments. Biogeochemistry, 93, 159–178.

    Article  Google Scholar 

  • Frank, G., Partrica, B., & Gerorges, S. (1995). Effects of bioturbation in a marine sediment from the Western Mediterranean littoral. Hydrobiologia, 304, 49–58.

    Article  Google Scholar 

  • Hansen, J. I., Henriksen, K., & Blackburn, T. H. (1981). Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments. Microbial Ecology, 7, 297–304.

    Article  CAS  Google Scholar 

  • Henriksen, K., & Kemp, W. M. (1988). Nitrification in estuarine and coastal marine sediments: methods, patterns and regulating factors. In T. H. Blackburn & J. Sørensen (Eds.), Nitrogen cycling in marine environments (pp. 2076–2250). New York: Wiley.

    Google Scholar 

  • Henriksen, K., Hansen, J. I., & Blankburn, T. H. (1981). Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different type of sediment from Danish Waters. Marine Biology, 61, 299–304.

    Article  CAS  Google Scholar 

  • Henry, S., Baudoin, E., Lopez-Gutierrez, J. C., Martin-Laurent, F., Brauman, A., & Philippot, L. (2004). Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Journal of Microbiological Methods, 59, 327–335.

    Article  CAS  Google Scholar 

  • Herbert, R. A. (1999). Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Reviews, 23, 563–590.

    Article  CAS  Google Scholar 

  • Hopkinson, C. S. (1987). Nutrient regeneration in shallow-water sediments of the estuarine plume region of the nearshore Georgia Bight, USA. Marine Biology, 94, 127–142.

  • Hou, L. J., Liu, M., Xu, S. Y., Ou, D. N., Yu, J., Cheng, S. B., Lin, X., & Yang, Y. (2007). The effects of semi-lunar spring and neap tidal change on nitrification, denitrification and N2O vertical distribution in the intertidal sediments of the Yangtze estuary, China. Estuarine, Coastal and Shelf Science, 73, 607–616.

    Article  Google Scholar 

  • Hou, L. J., Zheng, Y., Liu, M., Gong, J., Zhang, X., Yin, G., & You, L. (2013). Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research, Biogeosciences, 118, 1237–1246.

    Article  CAS  Google Scholar 

  • Howarth, R. W. (1988). Nutrients limitation of net primary production in marine ecosystems. Annual Review of Ecology and Systematics, 19, 89–110.

    Article  Google Scholar 

  • Hulth, S., Aller, R. C., Canfield, D. E., Dalsgaard, T., Engström, P., Gillbert, F., Sundbäck, K., & Thamdrup, B. (2005). Nitrogen removal in marine environments: recent findings and future research challenges. Marine Chemistry, 94, 125–145.

    Article  CAS  Google Scholar 

  • Hutchins, S. R. (1992). Inhibition of alkylbenzene biodegradation under denitrifying conditions by using the acetylene block technique. Applied and Environmental Microbiology, 58(10), 3395–3398.

    CAS  Google Scholar 

  • Isnansetyo, A., Thien, N. D., Seguchi, M., Koriyama, M., & Koga, A. (2011). Nitrification potential of mud sediment of Ariake Sea tidal flat and the individual effect of temperature, pH, salinity and ammonium concentration on its nitrification rate. Research Journal of Environmental and Earth Sciences, 3(5), 587–599.

    CAS  Google Scholar 

  • Jenkins, M. C., & Kemp, W. M. (1984). The coupling of nitrification and denitrification in two estuarine sediments. Limnology and Oceanography, 29(3), 609–619.

    Article  CAS  Google Scholar 

  • Jensen, M. H., Lomestein, E., & Sorensen, J. (1990). Benthic NH4 + and NO3 flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Marine Ecology Progress Series, 61, 87–96.

    Article  CAS  Google Scholar 

  • Jones, J. G., Simon, B. M., & Horsley, R. W. (1982). Microbiological sources of ammonia in freshwater lake sediments. Journal of General Microbiology, 118, 2823–2831.

    Google Scholar 

  • Joye, S. B., & Paerl, H. W. (1994). Nitrogen cycling in microbial mats rates and patterns of denitrification and nitrogen fixation. Marine Biology, 119, 285–295.

    Article  CAS  Google Scholar 

  • Kasper, H. F. (1982). Denitrification in marine sediment: measurement of capacity and estimate of in situ rate. Applied and Environmental Microbiology, 43(3), 522–527.

    Google Scholar 

  • Kasper, H. F. (1983). Denitrification, nitrate reduction to ammonium, and inorganic pools in intertidal sediments. Marine Biology, 74, 133–139.

    Article  Google Scholar 

  • Kemp, W. M., Caffrey, S. J., & Mayer, M. (1990). Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnology and Oceanography, 35, 1545–1563.

    Article  CAS  Google Scholar 

  • Kim, D. H., Matsuda, O., & Yamamoto, T. (1997). Nitrification, denitirification and nitrate reduction rates in the sediment of Hiroshima Bay, Japan. Journal of Oceanography, 53, 317–324.

    CAS  Google Scholar 

  • Koch, M. S., Maltby, E., Oliver, G. A., & Bakker, S. A. (1992). Factors controlling denitrification rates of tidal mudflats and fringing salt marshes in south-west England. Estuarine, Coastal and Shelf Science, 34, 471–485.

    Article  CAS  Google Scholar 

  • Koga, A., Koriyama, M., & Seguchi, M. (2011). Relationships between denitrification activity and environmental factors in the tidal sediment of the inner area of Ariake Bay. Journal of Hydroscience and Hydraulic Engineering, 29(2), 1–15.

    Google Scholar 

  • Koike, I., & Hattori, A. (1978). Denitrification and ammonia formation in anaerobic coastal sediments. Applied and Environmental Microbiology, 35, 278–282.

    CAS  Google Scholar 

  • Koriyama, M., Hayami, Y., Koga, A., Yamamoto, K., Isnansetyo, A., Hamada, T., Yoshino, K., Katano, T., & Yamaguchi, S. (2013). Seasonal variations of water column nutrients in the inner area of Ariake Bay, Japan: the role of muddy sediments. Environmental Monitoring and Assessment, 185, 6831–6846.

    Article  CAS  Google Scholar 

  • Lerat, Y., Lasserre, P., & Corre, P. (1990). Seasonal changes in porewater concentrations of nutrients and their diffusive fluxes at the sediment-water interface. Journal of Experimental Marine Biology and Ecology, 135, 135–160.

    Article  CAS  Google Scholar 

  • Nishino, T., Koike, I., & Hattori, A. (1983). Estimates of denitrification and nitrification in coastal and estuarine sediments. Applied and Environmental Microbiology, 45, 444–450.

    Google Scholar 

  • Nowichi, B. L., & Nixon, S. W. (1985). Benthic nutrient remineralization in a coastal lagoon ecosystem. Estuaries, 8, 182–190.

    Article  Google Scholar 

  • Patel, A. B. (2008). Benthic denitrification and organic matter mineralization in intertidal flats of an enclosed coastal inlet, Ago Bay, Japan. Marine Pollution Bulletin, 57, 116–124.

    Article  CAS  Google Scholar 

  • Rauch, M., & Denis, L. (2008). Spatio-temporal variability in benthic mineralization processes in the eastern English Channel. Biogeochemistry, 89, 163–180.

    Article  CAS  Google Scholar 

  • Risgaard-Petersen, N., Meyer, R. L., Schmid, M., Jetten, M. S. M., Enrich-Prast, A., Rysgaard, S., & Revsbech, N. P. (2004). Anaerobic ammonium oxidation in an estuarine sediment. Aquatic Microbial Ecology, 36, 293–304.

    Article  Google Scholar 

  • Rybarczyk, H., Desprez, M., Ducroty, J. P., Olivesi, R., Delesmont, R., Jamet, F., & Elkaim, B. (1993). Dynamics of nutrients and faecal bacteria in a macrotidal estuary, the Bay of Somme (France). Netherland Journal of Aquatic Ecology, 27, 395–404.

    Article  CAS  Google Scholar 

  • Sakamaki, T., & Nishimura, O. (2009). Is sediment mud content a significant predictor of macrobenthos abundance in low-mud-content tidal flats? Marine and Freshwater Research, 60(2), 160–167.

    Article  Google Scholar 

  • Seitzinger, S. P. (1988). Denitrification in freshwater and coastal marine ecosystem: ecological and geochemical significance. Limnology and Oceanography, 33, 702–724.

    Article  CAS  Google Scholar 

  • Seitzinger, S. P., & Pilson, M. E. Q. (1984). Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnology and Oceanography, 29, 73–83.

    Article  CAS  Google Scholar 

  • Takaya, N., Antonina, M. B., Sakaguchi, Y., Kato, I., Zhou, Z., & Shoun, H. (2003). Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Applied and Environmental Microbiology, 69, 3152–3157.

    Article  CAS  Google Scholar 

  • Thamdrup, B., & Dalsgaard, T. (2002). Production of N-2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, 68, 1312–1318.

    Article  CAS  Google Scholar 

  • Trimmer, M., Nedwell, D. B., Sivyer, D. B., & Malcolm, S. J. (2000). Seasonal organic mineralization and denitrification in intertidal sediments and their relationship to the abundance of Enteromorpha sp. and Ulva sp. Marine Ecology Progress Series, 203, 67–80.

    Article  CAS  Google Scholar 

  • Trimmer, M., Nicholls, J. C., & Deflandre, B. (2003). Anaerobic ammonium oxidation measured in sediments along the Thames Estuary, United Kingdom. Applied and Environmental Microbiology, 69, 6447–6454.

    Article  CAS  Google Scholar 

  • Vanderborght, J. P., & Billen, G. (1975). Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification. Limnology and Oceanography, 20(6), 953–961.

    Article  CAS  Google Scholar 

  • Wang, D., Chen, Z., Xu, S., Hu, L., & Wang, J. (2006). Denitrification in Chongming east tidal flat sediment, Yangtze estuary, China. Science in China: Series D Earth Sciences, 49(10), 1090–1097.

    Article  CAS  Google Scholar 

  • Warnken, K. W., Gill, G. A., Santschi, P. H., & Griffin, L. L. (2000). Benthic exchange of nutrients in Galveston Bay, Texas. Estuaries, 23(5), 647–661.

    Article  CAS  Google Scholar 

  • Yanagi, T., & Abe, R. (2005). Nitrogen budget change in Ariake Bay between 1979 and 1999. Oceanography in Japan, 15(1), 67–75 (in Japanese).

    Google Scholar 

  • Yoon, W. B., & Benner, R. (1992). Denitrification and oxygen consumption in sediments of two south Texas estuaries. Marine Ecology Progress Series, 90, 157–167.

    Article  CAS  Google Scholar 

  • Zimmerman, A. R., & Benner, R. (1994). Denitrification, nutrient regeneration and carbon mineralization in sediments of Galveston Bay, Texas, USA. Marine Ecology Progress Series, 114, 275–288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Koriyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koriyama, M., Koga, A., Seguchi, M. et al. Factors controlling denitrification of mudflat sediments in Ariake Bay, Japan. Environ Monit Assess 188, 96 (2016). https://doi.org/10.1007/s10661-016-5101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5101-1

Keywords

Navigation