Skip to main content
Log in

Online retailer’s optimal financing strategy in an online marketplace

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

This paper studies an e-commerce supply chain, where a capital-constrained online retailer sells products through an e-commerce platform and may finance from the commercial bank, the upstream supplier as well as the e-commerce platform to relieve its capital distress. In the presence of bankruptcy risk for the online retailer, we establish a three-echelon Stackelberg game model, and characterise the optimal decision for each supply chain player. We examine the retailer’s financing strategy by comparing profits under three different financing schemes. Compared with existing literature, we find that in contrast to trade credit and e-commerce platform financing, the retailer has an incentive to finance from the bank. Also, the e-commerce platform is not always willing to provide financing service to the retailer when the commission rate is high. Furthermore, we investigate the impacts of the commission rate and the retailer’s initial capital on the equilibrium results. The results show that the interest rates of the bank and the e-commerce platform decrease with the commission rate. In contrast to the bank, the e-commerce platform generally charges a lower interest rate. In particular, when the commission rate exceeds a certain threshold, the e-commerce platform will provide free financing services to the retailer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li, H., Bi, G., Song, W., & Yuan, X. (2022). Trade credit insurance: Insuring strategy of the retailer and the manufacturer. International Journal of Production Research, 5, 1478–1499.

    Article  Google Scholar 

  2. Li, X. (2022). The impact of place-of-origin on price premium for agricultural products: Empirical evidence from Taobao.com. Electronic Commerce Research, 22, 561–584.

    Article  Google Scholar 

  3. Lin, Q., & Peng, Y. (2021). Incentive mechanism to prevent moral hazard in online supply chain finance. Electronic Commerce Research, 21, 571–598.

    Article  Google Scholar 

  4. Ma, P., & Meng, Y. (2022). Optimal financing strategies of a dual-channel closed-loop supply chain. Electronic Commerce Research & Applications, 53, 101140.

    Article  Google Scholar 

  5. Cao, K., Xu, Y., Wu, Q., Wang, J., & Liu, C. (2021). Optimal channel and logistics service selection strategies in the e-commerce context. Electronic Commerce Research and Applications, 48, 101070.

    Article  Google Scholar 

  6. Chen, S., He, Q., & Xiao, H. (2022). A study on cross-border e-commerce partner selection in B2B mode. Electronic Commerce Research, 22, 1–21.

    Article  Google Scholar 

  7. Zhen, X., Shi, D., Li, Y., & Zhang, C. (2020). Manufacturer’s financing strategy in a dual-channel supply chain: third-party platform, bank and retailer credit financing. Transportation Research Part E-Logistics and Transportation Review, 133, 101820.

    Article  Google Scholar 

  8. Gupta, D., & Chen, Y. (2020). Retailer-direct financing contracts under consignment. Manufacturing & Service Operations Management, 22(3), 528–544.

    Article  Google Scholar 

  9. Sun, J., Yuan, P., & Hua, L. (2022). Pricing and financing strategies of a dual-channel supply chain with a capital-constrained manufacturer. Annals of Operations Research. Forthcoming. https://doi.org/10.1007/s10479-022-04602-w

  10. Ma, C., Dai, Y., & Li, Z. (2022). Financing format selection for electronic business platforms with a capital-constrained e-tailer. Transportation Research Part E-Logistics and Transportation Review, 162, 102720.

    Article  Google Scholar 

  11. Cai, S., & Yan, Q. (2022). Online sellers’ financing strategies in an e-commerce supply chain: bank credit vs. e-commerce platform financing. Electronic Commerce Research. Forthcoming. https://doi.org/10.1007/s10660-022-09552-w

  12. Guchhait, R., & Sarkar, B. (2021). Economic and environmental assessment of an unreliable supply chain management. RAIRO-Operations Research, 55(5), 3153–3170.

    Article  Google Scholar 

  13. Sarkar, A., Guchhait, R., & Sarkar, B. (2022). Application of the artificial neural network with multithreading within an inventory model under uncertainty and inflation. International Journal of Fuzzy Systems, 24(5), 2318–2332.

    Article  Google Scholar 

  14. Sarkar, B., Mondal, S., Hur, S., Ahmadian, A., Salahshour, S., Guchhait, R., & Iqbal, M. (2019). An optimization technique for national income determination model with stability analysis of differential equation in discrete and continuous process under the uncertain environment. RAIRO-Operations Research, 53(5), 1649–1674.

    Article  Google Scholar 

  15. Shi, 2017. China MSME Finance Report 2016. http://www.smefinanceforum.org/ post/china-msme-finance-report-2016. (Accessed 10 Mar 2019).

  16. Wu, S., Chan, F., & Chung, S. (2022). The impact of buyback support on financing strategies for a capital-constrained supplier. International Journal of Production Economics., 248, 108457.

    Article  Google Scholar 

  17. Yang, H., Zhuo, W., Zha, Y., & Wan, H. (2016). Two-period supply chain with flexible trade credit contract. Expert Systems with Applications, 66, 95–105.

    Article  Google Scholar 

  18. Seifert, D., Seifert, R., & Protopappa-Sieke, M. (2013). A review of trade credit literature: Opportunities for research in operations? European Journal of Operational Research, 231(2), 245–256.

    Article  Google Scholar 

  19. Yang, H., Zhen, Z., Yan, Q., & Wan, H. (2022). Mixed financing scheme in a capital-constrained supply chain: Bank credit and e-commerce platform financing. International Transactions in Operational Research, 29, 2423–2447.

    Article  Google Scholar 

  20. Wang, C., Fan, X., & Yin, Z. (2019). Financing online retailers: bank vs. electronic business platform, equilibrium, and coordinating strategy. European Journal of Operational Research, 276(1), 343–356.

    Article  Google Scholar 

  21. Jin, W., Zhang, Q., & Luo, J. (2019). Non-collaborative and collaborative financing in a bilateral supply chain with capital constraints. Omega, 88, 210–222.

    Article  Google Scholar 

  22. Jiang, W., Xu, L., Chen, Z., Govindan, K., & Chin, K. (2022). Financing equilibrium in a capital constrained supply Chain: The impact of credit rating. Transportation Research Part E-Logistics and Transportation Review, 157, 102559.

    Article  Google Scholar 

  23. Astvansh, V., & Jindal, N. (2022). Differential effects of received trade credit and provided trade credit on firm value. Production and Operations Management, 31(2), 781–798.

    Article  Google Scholar 

  24. Tang, T., Xu, H., Ke, G., & Chen, K. (2022). Analyzing financing and encroachment strategies for a capital-constrained contract manufacturer. International Journal of Production Economics, 254, 108638.

    Article  Google Scholar 

  25. Zhi, B., Wang, X., & Xu, F. (2022). The effects of in-transit inventory financing on the capital-constrained supply chain. European Journal of Operational Research, 296(1), 131–145.

    Article  Google Scholar 

  26. Chen, X. (2015). A model of trade credit in a capital-constrained distribution channel. International Journal of Production Economics, 159, 347–357.

    Article  Google Scholar 

  27. Chen, X., Cai, G., & Song, J. (2019). The cash flow advantages of 3PLs as supply chain orchestrators. Manufacturing & Service Operations Management, 21(2), 435–451.

    Article  Google Scholar 

  28. Li, R., Liu, Y., Teng, J., & Tsao, Y. (2019). Optimal pricing, lot-sizing and backordering decisions when a seller demands an advance-cash-credit payment scheme. European Journal of Operational Research, 278, 283–295.

    Article  Google Scholar 

  29. Wu, J., Teng, J., & Skouri, K. (2018). Optimal inventory policies for deteriorating items with trapezoidal-type demand patterns and maximum lifetimes under upstream and downstream trade credits. Annals of Operations Research, 264, 459–476.

    Article  Google Scholar 

  30. Chod, J., Lyandres, E., & Yang, S. (2019). Trade credit and supplier competition. Journal of Financial Economics, 131(2), 484–505.

    Article  Google Scholar 

  31. Yan, N., He, X., & Liu, Y. (2019). Financing the capital-constrained supply chain with loss aversion: Supplier finance vs. supplier investment. Omega, 88, 162–178.

    Article  Google Scholar 

  32. Goyal, S. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the operational Research Society, 36(4), 335–338.

    Article  Google Scholar 

  33. Chen, X., & Wang, A. (2012). Trade credit contract with limited liability in the supply chain with budget constraints. Annals of Operations Research, 196(1), 153–165.

    Article  Google Scholar 

  34. Cai, G., Chen, X., & Xiao, Z. (2014). The roles of bank and trade credits: Theoretical analysis and empirical evidence. Production and Operations Management, 23(4), 583–598.

    Article  Google Scholar 

  35. Jing, B., Chen, X., & Cai, G. (2012). Equilibrium financing in a distribution channel with capital constraint. Production and Operations Management, 21(6), 1090–1101.

    Article  Google Scholar 

  36. Kouvelis, P., & Zhao, W. (2012). Financing the newsvendor: supplier vs. bank, optimal rates and alternative schemes. Operations Research, 60(3), 566–580.

    Article  Google Scholar 

  37. Kouvelis, P., & Zhao, W. (2018). Who should finance the supply chain? Impact of credit ratings on supply chain decisions. Manufacturing & Service Operations Management, 20(1), 19–35.

    Article  Google Scholar 

  38. Yang, S., & Birge, J. (2018). Trade credit, risk sharing, and inventory financing portfolios. Management Science, 64(8), 3667–3689.

    Article  Google Scholar 

  39. Gao, D., Zhao, X., & Geng, W. (2014). A delay-in-payment contract for Pareto improvement of a supply chain with stochastic demand. Omega, 49, 60–68.

    Article  Google Scholar 

  40. Huang, J., Yang, W., & Tu, Y. (2019). Financing mode decision in a supply chain with financial constraint. International Journal of Production Economics, 57, 7158.

    Article  Google Scholar 

  41. Huang, S., Fan, Z., & Wang, X. (2019). Optimal operational strategies of supply chain under financing service by a 3PL firm. International Journal of Production Research, 57(11), 3405–3420.

    Article  Google Scholar 

  42. Zhang, Q., Tsao, Y., & Chen, T. (2014). Economic order quantity under advance payment. Applied Mathematical Modelling, 38(24), 5910–5921.

    Article  Google Scholar 

  43. Taleizadeh, A. (2014). An EOQ model with partial backordering and advance payments for an evaporating item. International Journal of Production Economics, 155(9), 185–193.

    Article  Google Scholar 

  44. Taleizadeh, A. (2017). Lot-sizing model with advance payment pricing and disruption in supply under planned partial backordering. International Transactions in Operational Research, 24(4), 783–800.

    Article  Google Scholar 

  45. Otrodi, F., Yaghin, R., & Torabi, S. (2019). Joint pricing and lot-sizing for a perishable item under two-level trade credit with multiple demand classes. Computers & Industrial Engineering, 127, 761–777.

    Article  Google Scholar 

  46. Feng, L., & Chan, Y. (2019). Joint pricing and production decisions for new products with learning curve effects under upstream and downstream trade credits. European Journal of Operational Research, 272(3), 905–913.

    Article  Google Scholar 

  47. Ding, W., & Wan, G. (2020). Financing and coordinating the supply chain with a capital- constrained supplier under yield uncertainty. International Journal of Production Economics, 230, 107813.

    Article  Google Scholar 

  48. Buzacott, J., & Zhang, R. (2004). Inventory management with asset-based financing. Management Science, 50(9), 1274–1292.

    Article  Google Scholar 

  49. Jin, W., & Zhang, Q. (2021). Decision making in trade credit financing: Impact of loss aversion and power imbalance. International Transactions in Operational Research, 28(5), 2607–2632.

    Article  Google Scholar 

  50. Kouvelis, P., & Zhao, W. (2011). The newsvendor problem and price only contract when bankruptcy costs exist. Production and Operations Management, 20(6), 921–936.

    Article  Google Scholar 

  51. Shi, J., Du, Q., Lin, F., Bai, L., Fung, R., & Lai, K. (2020). Coordinating the supply chain finance system with buyback contract: A capital-constrained newsvendor problem. Computers & Industrial Engineering, 146, 106587.

    Article  Google Scholar 

  52. Alan, Y., & Gaur, V. (2018). Operational investment and capital structure under asset-based lending. Manufacturing & Service Operations Management, 20(4), 637–654.

    Article  Google Scholar 

  53. Yan, N., Sun, B., Zhang, H., & Liu, C. (2016). A partial credit guarantee contract in a capital-constrained supply chain: Financing equilibrium and coordinating strategy. International Journal of Production Economics, 17, 122–133.

    Article  Google Scholar 

  54. Yang, H., Zhuo, W., & Shao, L. (2017). Equilibrium evolution in a two-echelon supply chain with financially constrained retailers: The impact of equity financing. International Journal of Production Economics, 185, 139–149.

    Article  Google Scholar 

  55. Chen, Z., & Zhang, R. (2021). A cash-constrained dynamic lot-sizing problem with loss of goodwill and credit-based loan. International Transactions in Operational Research, 28(5), 2841–2866.

    Article  Google Scholar 

  56. Yan, N., Liu, Y., Xu, X., & He, X. (2020). Strategic dual-channel pricing games with e-retailer finance. European Journal of Operational Research, 283(1), 138–151.

    Article  Google Scholar 

  57. Jing, B., & Seidmann, A. (2014). Finance sourcing in a supply chain. Decision Support Systems, 58, 15–20.

    Article  Google Scholar 

  58. Chang, S., Li, A., Wang, X., & Wang, X. (2022). Joint optimization of e-commerce supply chain financing strategy and channel contract. European Journal of Operational Research, 303(2), 908–927.

    Article  Google Scholar 

  59. Feng, X., Moon, I., & Ryu, K. (2015). Supply chain coordination under budget constraints. Computers & Industrial Engineering, 88, 487–500.

    Article  Google Scholar 

  60. Yan, N., & Sun, B. (2013). Coordinating loan strategies for supply chain financing with limited credit. OR Spectrum, 35(4), 1039–1058.

    Article  Google Scholar 

  61. Zhan, J., Chen, X., & Hu, Q. (2019). The value of trade credit with rebate contract in a capital-constrained supply chain. International Journal of Production Research, 57(2), 379–396.

    Article  Google Scholar 

  62. Cao, E., Du, L., & Ruan, J. (2019). Financing preferences and performance for an emission-dependent supply chain: Supplier vs. bank. International Journal of Production Economics, 208, 383–399.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant No. 71901117 and the Ministry of Education in China of Humanities and Social Science Project under Grant No. 19YJC630242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyan Zhuo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendices

Appendix 1

Proof of Lemma 1

The retailer’s profit can be rewritten as \(\mathop {\max }\limits_{{q^{B} }} \pi_{R}^{B} = \left( {1 - \lambda } \right)\int_{{\Delta_{1} }}^{{q^{B} }} {\overline{F}\left( D \right)dD - K}\). Therefore, we have \(\frac{{\partial \pi_{R}^{B} }}{{\partial q^{B} }} = \left( {1 - \lambda } \right)\left[ {\overline{F}\left( {q^{B} } \right) - \overline{F}\left( {{\Delta }_{1} } \right)\frac{{\partial {\Delta }_{1} }}{{\partial q^{B} }}} \right]\), where \(\frac{{\partial {\Delta }_{1} }}{{\partial q^{B} }} = \frac{{w^{B} \left( {1 + r^{B} } \right)}}{1 - \lambda }\). According to the first order condition, we obtain \(\overline{F}\left( {q^{B*} } \right) - {\Omega }_{1} \overline{F}\left( {{\Delta }_{1} } \right) = 0\), where \({\Omega }_{1} = \frac{{w^{B} \left( {1 + r^{B} } \right)}}{1 - \lambda }\). Further, \(\left. {\frac{{\partial^{2} \pi_{R}^{B} }}{{\partial (q^{B} )^{2} }}} \right|_{{q^{B} = q^{B*} }} = \left( {1 - \lambda } \right)\Omega_{1} \overline{F}\left( {\Delta_{1} } \right)\left[ {\Omega_{1} h\left( {\Delta_{1} } \right) - h\left( {q^{B*} } \right)} \right]\). Since \({\Omega }_{1} < 1\), \({\Delta }_{1} < q^{B*}\) and \(h\left( \cdot \right)\) is an increasing function, then \(\left. {\frac{{\partial^{2} \pi_{R}^{B} }}{{\partial (q^{B} )^{2} }}} \right|_{{q^{B} = q^{B*} }} < 0\). Therefore, \(q^{B*}\) is the unique optimal solution. \(\square\).

Appendix 2

Proof of Proposition 1

  1. (i)

    From Lemma 1, we have \(\frac{\partial {q}^{B*}}{\partial K}=\frac{h\left({\Delta }_{1}\right)\left(1+{r}^{B}\right)}{{\Omega }_{1}h\left({\Delta }_{1}\right)-h\left({q}^{B*}\right)}\). Since \({\Omega }_{1}=\frac{{w}^{B}{q}^{B*}\left(1+{r}^{B}\right)}{1-\lambda }<1\), \({\Delta }_{1}=\frac{({w}^{B}{q}^{B*}-K)(1+{r}^{B})}{1-\lambda }<{q}^{B*}\) and \(h\left(\bullet \right)\) is an increasing function, then \(\frac{\partial {q}^{B*}}{\partial K}<0\).

  2. (ii)

    According to Lemma 1, we have \(\frac{\partial {q}^{B*}}{\partial {w}^{B}}=\frac{1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)}{{w}^{B}\left[{\Omega }_{1}h\left({\Delta }_{1}\right)-h\left({q}^{B*}\right)\right]}\). Note that \(\frac{\partial (\overline{F}\left(Q\right)Q)}{\partial Q}=\overline{F}\left(Q\right)[1-H(Q)]\). Since \(H(Q)\) increases with \(Q\), then \(\overline{F}\left(Q\right)Q\) is a concave function in \(Q\) and \({Q}^{*}\) maximizes \(\overline{F}\left(Q\right)Q\), where \({Q}^{*}\) holds \(1-H\left({Q}^{*}\right)=0\). Since \(\overline{F}\left({q}^{B*}\right)={\Omega }_{1}\overline{F}\left({\Delta }_{1}({q}^{B*})\right)>{\Omega }_{1}\overline{F}({\Omega }_{1}{q}^{B*})\), then we have \(\overline{F}\left({q}^{B*}\right){q}^{B*}>{\Omega }_{1}{q}^{B*}\overline{F}({\Omega }_{1}{q}^{B*})\). Therefore, \({\Omega }_{1}{q}^{B*}<{Q}^{*}\) and \(1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)>1-H\left({\Omega }_{1}{q}^{B*}\right)>1-H\left({Q}^{*}\right)=0\). Since \({\Omega }_{1}h\left({\Delta }_{1}\right)<h\left({q}^{B*}\right)\), then \(\frac{\partial {q}^{B*}}{\partial {w}^{B}}<0\).

  3. (iii)

    According to Lemma 1, we have \(\frac{\partial {q}^{B*}}{\partial {r}^{B}}=\frac{{w}^{B}-{\Omega }_{1}\left({w}^{B}{q}^{B*}-K\right)h\left({\Delta }_{1}\right)}{\left(1-\lambda \right){\Omega }_{1}[{\Omega }_{1}h\left({\Delta }_{1}\right)-h\left({q}^{B*}\right)]}\). Since \({w}^{B}-\) \({\Omega }_{1}\left({w}^{B}{q}^{B*}-K\right)h\left({\Delta }_{1}\right)>{w}^{B}\left[1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)\right]>0\) and \({\Omega }_{1}h\left({\Delta }_{1}\right)-h\left({q}^{B*}\right)<0\), we have \(\frac{\partial {q}^{B*}}{\partial {r}^{B}}\) \(<0\). \(\square\)

Appendix 3

Proof of Proposition 2

We prove this by contradiction. Suppose \({q}^{N*}\ge {q}^{B*}\) for any \(K\), then we have \({q}^{N*}\ge {q}^{B*}{|}_{K=0}=\widehat{q}\). Therefore, \(\overline{F}\left(\widehat{q}\right)\widehat{q}={\Omega }_{1}\widehat{q}\overline{F}({\Omega }_{1}\widehat{q})\). According to the Proof of Proposition 1, we obtain \({\Omega }_{1}\widehat{q}<{Q}^{*}<\widehat{q}\) and \(1-H\left({\Omega }_{1}\widehat{q}\right)>1-H\left({Q}^{*}\right)=0>1-H\left(\widehat{q}\right)\). As \({q}^{N*}\) holds \(\overline{F}\left({q}^{N*}\right)-f\left({q}^{N*}\right){q}^{N*}-\frac{c}{1-\lambda }=0\), we obtain \(1-H\left({q}^{N*}\right)=\frac{c}{\left(1-\lambda \right)\overline{F}\left({q}^{N*}\right)}>0\). Therefore, \(H\left(\widehat{q}\right)>H\left({q}^{N*}\right)\), which implies \(\widehat{q}>{q}^{N*}\). This is a contradiction to \({q}^{N*}\ge \widehat{q}\). Hence, we obtain \({q}^{N*}<{q}^{B*}\). \(\square\)

Appendix 4

Proof of Proposition 3

  1. (i)

    Since \({w}^{B}{q}^{B*}>K\), then \({q}^{B*}>\frac{K}{{w}^{B}}={q}^{NF*}\).

  2. (ii)

    \(\frac{\partial {\pi }_{R}^{B*}}{\partial {r}^{B}}=\left(1-\lambda \right)[\overline{F}\left({q}^{B*}\right)\frac{\partial {q}^{B*}}{\partial {r}^{B}}-\overline{F}\left({\Delta }_{1}\right)\frac{\partial {\Delta }_{1}}{\partial {r}^{B}}]=-\left(1-\lambda \right)\overline{F}\left({\Delta }_{1}\right)\Delta ({q}^{B*})<0\).

  3. (iii)

    Since \(\frac{\partial ({\pi }_{R}^{B*}-{\pi }_{R}^{NF*})}{\partial {r}^{B}}=-\left(1-\lambda \right)\overline{F}\left({\Delta }_{1}\right)\Delta ({q}^{B*})<0\), then there exists a unique \(\overline{r}\) such that \({\pi }_{R}^{B*}\ge {\pi }_{R}^{NF*}\) if \({r}^{B}\le \overline{r}\), where \(\overline{r}\) satisfies \({\pi }_{R}^{B*}-{\pi }_{R}^{NF*}=0\), i.e., \({\int }_{{\Delta }_{1} }^{{q}^{B*}(\overline{r}) }\overline{F}(D)dD-\) \({\int }_{0 }^{\frac{K}{{w}^{B}}}\overline{F}\left(D\right)dD=0\).\(\square\)

Appendix 5

Proof of Lemma 2

The bank’s profit function can be rewritten as \({\pi }_{B}^{B}=\left(1-\lambda \right){\int }_{0 }^{{\Delta }_{1}}\overline{F}\left(D\right)dD-\left({w}^{B}{q}^{B*}-K\right)\), then \(\frac{\partial {\pi }_{B}^{B}}{\partial {r}^{B}}=\overline{F}\left({\Delta }_{1}\right){w}^{B}\left(1+{r}^{B}\right)\frac{{w}^{B}-\left({w}^{B}{q}^{B*}-K\right)h\left({q}^{B*}\right)}{\left(1-\lambda \right){\Omega }_{1}[{\Omega }_{1}h\left({\Delta }_{1}\right)-h\left({q}^{B*}\right)]}-{w}^{B}\frac{\partial {q}^{B*}}{\partial {r}^{B}}={w}^{B}\frac{\partial {q}^{B*}}{\partial {r}^{B}}[\overline{F}\left({\Delta }_{1}\right){w}^{B}\left(1+{r}^{B}\right){\xi }_{1}\left({r}^{B}\right)-1]\), where \({\xi }_{1}\left({r}^{B}\right)=\frac{{w}^{B}-\left({w}^{B}{q}^{B*}-K\right)h\left({q}^{B*}\right)}{{w}^{B}-{\Omega }_{1}\left({w}^{B}{q}^{B*}-K\right)h\left({\Delta }_{1}\right)}<1\). From Proposition 1, we have \(\frac{\partial {q}^{B*}}{\partial {r}^{B}}<0\). Therefore, the signal of \(\frac{\partial {\pi }_{B}^{B}}{\partial {r}^{B}}\) is related to \(\overline{F}\left({\Delta }_{1}\right){w}^{B}\left(1+{r}^{B}\right){\xi }_{1}\left({r}^{B}\right)-1\). Based on the form of \(\frac{\partial {\pi }_{B}^{B}}{\partial {r}^{B}}\), as in Jing et al. [35] and Cao et al. [62], we show that \(\overline{F}\left({\Delta }_{1}\right){w}^{B}\left(1+{r}^{B}\right){\xi }_{1}\left({r}^{B}\right)-1\) increases with \({r}^{B}\), and we derive that \({\pi }_{B}^{B}\) is a monotone or unimodal function of \({r}^{B}\) for \({r}^{B}\in [0,\overline{r}]\). Since \({w}^{B}\le p=1\), then \(\overline{F}\left({\Delta }_{1}\right){w}^{B}\left(1+{r}^{B}\right){\xi }_{1}\left({r}^{B}\right)-1=\overline{F}\left({\Delta }_{1}\right){w}^{B}{\xi }_{1}\left({r}^{B}\right)-1<0\) if \({r}^{B}=0\), which indicates \({r}^{B*}>0\). Therefore, if \({r}_{1}\in \left(0,\overline{r}\right)\), then \({r}^{B*}={r}_{1}\); if \({r}_{1}\ge \overline{r}\), then \({r}^{B*}=\overline{r}\). \(\square\)

Appendix 6

Proof of Lemma 3

First, \(\frac{\partial {\pi }_{S}^{B}}{\partial {w}^{B}}=\frac{{w}^{B}\left[1-H\left({q}^{B*}\right)\right]-c\left[1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)\right]}{{w}^{B}\left[{\Omega }_{1}h\left({\Delta }_{1}\right)-h\left({q}^{B*}\right)\right]}=\frac{\partial {q}^{B*}}{\partial {w}^{B}}\{\frac{{w}^{B}\left[1-H\left({q}^{B*}\right)\right]}{1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)}-c\}\), where \(\frac{\partial {q}^{B*}}{\partial {w}^{B}}<0\) (see Proposition 1). Let \({\eta }_{1}\left({w}^{B}\right)=\frac{1-H\left({q}^{B*}\right)}{1-\Omega {q}^{B*}h\left({\Delta }_{1}\right)}\), then the sign of \(\frac{\partial {\pi }_{S}^{B}}{\partial {w}^{B}}\) is related to that of \({\eta }_{1}\left({w}^{B}\right)-c\). Based on the formulation of \({\eta }_{1}\left({w}^{B}\right)-c\), according to the proof of Proposition 6 in Jing et al. [35], we have \(\frac{\partial {\eta }_{1}\left({w}^{B}\right)}{\partial {w}^{B}}>0\). Hence, \(\frac{{w}^{B}[1-H({q}^{B*})]}{1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)}\) is also an increasing function of \({w}^{B}\). Assume that \({w}_{1}\) holds \(\frac{{w}_{1}[1-H({q}^{B*})]}{1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)}-c=0\), then \({w}_{1}=\frac{c\left[1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)\right]}{1-H\left({q}^{B*}\right)}\). Since \(1-{\Omega }_{1}{q}^{B*}h\left({\Delta }_{1}\right)>1-H\left({q}^{B*}\right)\), then we have \({w}_{1}>c\). Hence, if \({w}_{1}\ge \frac{1-\lambda }{1+\overline{r}}\), then \({\pi }_{S}^{B}\) is a decreasing function with respect to \({w}^{B}\) and the optimal wholesale price is \({w}^{B*}=\frac{1-\lambda }{1+\overline{r}}\); if \({w}_{1}<\frac{1-\lambda }{1+\overline{r}}\), then \({\pi }_{S}^{B}\) is concave in \({w}^{B}\), and the optimal wholesale price is \({w}^{B*}={w}_{1}\).\(\square\)

Appendix 7

Proof of Proposition 4

The proof of Proposition 4 is similar to that of Proposition 1, and we omit it. \(\square\)

Appendix 8

Proof of Lemma 4

The proof of Lemma 4 is similar to Zhan et al. [61], and hence we omit it. \(\square\)

Appendix 9

Proof of Proposition 5

The proof of Proposition 5 is similar to that of Proposition 1, and we omit it. \(\square\)

Appendix 10

Proof of Lemma 5

The e-commerce platform’s profit function can be written as \(\pi_{E}^{E} = \lambda \int_{0 }^{{q^{E*} }} {\overline{F}\left( D \right)dD + \left( {1 - \lambda } \right)\int_{0 }^{{\Delta_{3} }} {\overline{F}\left( D \right)dD - \left( {w^{E} q^{E*} - K} \right)} }\), then we have \(\frac{\partial {\pi }_{E}^{E}}{\partial {r}^{E}}={w}^{E}\frac{\partial {q}^{E*}}{\partial {r}^{E}}\left[\varphi \left({r}^{E}\right)-1\right]\) and\(\varphi \left({r}^{E}\right)=\frac{\left[\lambda \overline{F}\left({q}^{E*}\right)+{w}^{E}\left(1+{r}^{E}\right)\overline{F}\left({\Delta }_{3}\right)\right]\left[1-H\left({\Delta }_{3}\right)\right]+\left(1-\lambda \right){\Delta }_{3}\overline{F}\left({\Delta }_{3}\right)\left[{\Omega }_{3}h\left({\Delta }_{3}\right)-h\left({q}^{E*}\right)\right]}{{w}^{E}\left[1-H\left({\Delta }_{3}\right)\right]}\). Following the proof of Proposition 1, we obtain\(\frac{\partial {q}^{E*}}{\partial {r}^{E}}<0\). Therefore, the signal of \(\frac{\partial {\pi }_{E}^{E}}{\partial {r}^{E}}\) depends on\(\varphi \left({r}^{E}\right)-1\). Based on the form of\(\frac{\partial {\pi }_{E}^{E}}{\partial {r}^{E}}\), as in [40, 41] and Cao et al. [62], we derive that \({\pi }_{E}^{E}\) is a monotone or unimodal function of \({r}^{E}\) for\({r}^{E}\in \left[0,\widehat{r}\right]\). If\({r}_{3}\le 0\), then\({r}^{E*}=0\); if\({r}_{3}\in \left(0,\widehat{r}\right)\), then\({r}^{E*}={r}_{3}\); if\({r}_{3}\ge \widehat{r}\), then\({r}^{E*}=\widehat{r}\).

Appendix 11

Proof of Lemma 6

The proof of Lemma 6 is similar to that of Lemma 3, and hence we omit it.\(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Zhuo, W. & Yu, C. Online retailer’s optimal financing strategy in an online marketplace. Electron Commer Res (2023). https://doi.org/10.1007/s10660-023-09672-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10660-023-09672-x

Keywords

Navigation