Skip to main content
Log in

Complete General Solutions for Equilibrium Equations of Isotropic Strain Gradient Elasticity

  • Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper, we consider isotropic Mindlin–Toupin strain gradient elasticity theory, in which the equilibrium equations contain two additional length-scale parameters and have the fourth order. For this theory, we developed an extended form of Boussinesq–Galerkin (BG) and Papkovich–Neuber (PN) general solutions. The obtained form of BG solution allows to define the displacement field through a single vector function that obeys the eight-order bi-harmonic/bi-Helmholtz equation. The developed PN form of the solution provides an additive decomposition of the displacement field into the classical and gradient parts that are defined through the standard Papkovich stress functions and modified Helmholtz decomposition, respectively. Relations between different stress functions and the completeness theorem for the derived general solutions are established. As an example, it is shown that a previously known fundamental solution within the strain gradient elasticity can be derived by using the developed PN general solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

No codes were generated during the current study.

References

  1. Boussinesq, J.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques. vol. 4. Gauthier-Villars, Paris (1885)

    MATH  Google Scholar 

  2. Galerkin, B., Galerkin, B.: On an investigation of stresses and deformations in elastic isotropic solids. Dokl. Akad. Nauk SSSR, Ser. A, 353–358 (1930)

  3. Papkovich, P.: The representation of the general integral of the fundamental equations of elasticity theory in terms of harmonic functions. Izv. Akad. Nauk SSSR, Phys.-Math. Ser 10(1425), 90 (1932)

    Google Scholar 

  4. Neuber, H.v.: Ein neuer ansatz zur lösung räumlicher probleme der elastizitätstheorie. Der hohlkegel unter einzellast als beispiel. J. Appl. Math. Mech. 14(4), 203–212 (1934)

    MATH  Google Scholar 

  5. Mindlin, R.: Note on the Galerkin and Papkovitch stress functions. Bull. Am. Math. Soc. 42(6), 373–376 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gurtin, M.: On Helmholtz’s theorem and the completeness of the Papkovich–Neuber stress functions for infinite domains. Arch. Ration. Mech. Anal. 9(1), 225–233 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Noll, W.: Verschiebungsfunktionen für elastische schwingungsprobleme. J. Appl. Math. Mech. 37(3–4), 81–87 (1957)

    MathSciNet  MATH  Google Scholar 

  8. Sternberg, E., Eubanks, R.: On the concept of concentrated loads and an extension of the uniqueness theorem in the linear theory of elasticity. J. Ration. Mech. Anal. 4, 135–168 (1955)

    MathSciNet  MATH  Google Scholar 

  9. Eubanks, R., Sternberg, E.: On the completeness of the Boussinesq–Papkovich stress functions. J. Ration. Mech. Anal. 5(5), 735–746 (1956)

    MathSciNet  MATH  Google Scholar 

  10. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New-York (1956)

    MATH  Google Scholar 

  11. Slobodyansky, M.G.: On the general and complete form of solutions of the equations of elasticity. Prikl. Mat. Mekh. (J. Appl. Math. Mech.) 23, 468–482 (1959)

    Google Scholar 

  12. Wang, L.S., Wang, B.B.: The transformation of the Papkovich–Neuber (PN) general solution and others. Acta Mech. Sin. 7(6), 755–758 (1991)

    Google Scholar 

  13. Lur’e, A.: On the theory of the system of linear differential equations with the constant coefficients. Tr. Leningr. 6, 31–36 (1937)

    Google Scholar 

  14. Wang, M., Wang, W.: Completeness and nonuniqueness of general solutions of transversely isotropic elasticity. Int. J. Solids Struct. 32(3–4), 501–513 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, M., Xu, B., Gao, C.: Recent general solutions in linear elasticity and their applications. Appl. Mech. Rev. 61(3) (2008)

  16. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Toupin, R.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Dell’Isola, F., Madeo, A., Seppecher, P.: Cauchy tetrahedron argument applied to higher contact interactions. Arch. Ration. Mech. Anal. 219(3), 1305–1341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  21. Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur. J. Mech. A, Solids 61, 92–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gusev, A.A., Lurie, S.A.: Symmetry conditions in strain gradient elasticity. Math. Mech. Solids 22(4), 683–691 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lurie, S.A., Kalamkarov, A.L., Solyaev, Y.O., Volkov, A.V.: Dilatation gradient elasticity theory. Eur. J. Mech. A, Solids 88, 104258 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eremeyev, V.A., Lurie, S.A., Solyaev, Y.O., et al.: On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity. Z. Angew. Math. Phys. 71(6), 1–16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eremeyev, V.A., Boutin, C., Steigmann, D., et al.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175–196 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gourgiotis, P., Georgiadis, H.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57(11), 1898–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Askes, H., Susmel, L.: Understanding cracked materials: is linear elastic fracture mechanics obsolete? Fatigue Fract. Eng. Mater. Struct. 38(2), 154–160 (2015)

    Article  Google Scholar 

  29. Vasiliev, V., Lurie, S., Solyaev, Y.: New approach to failure of pre-cracked brittle materials based on regularized solutions of strain gradient elasticity. Eng. Fract. Mech. 258, 108080 (2021)

    Article  Google Scholar 

  30. Lazar, M.: The fundamentals of non-singular dislocations in the theory of gradient elasticity: dislocation loops and straight dislocations. Int. J. Solids Struct. 50(2), 352–362 (2013)

    Article  Google Scholar 

  31. Makvandi, R., Abali, B.E., Eisenträger, S., Juhre, D.: A strain gradient enhanced model for the phase-field approach to fracture. PAMM 21(1), 202100195 (2021)

    Article  Google Scholar 

  32. Gourgiotis, P., Zisis, T., Baxevanakis, K.: Analysis of the tilted flat punch in couple-stress elasticity. Int. J. Solids Struct. 85, 34–43 (2016)

    Article  Google Scholar 

  33. Gourgiotis, P., Zisis, T., Giannakopoulos, A., Georgiadis, H.: The Hertz contact problem in couple-stress elasticity. Int. J. Solids Struct. 168, 228–237 (2019)

    Article  Google Scholar 

  34. Nikolopoulos, S., Gourgiotis, P., Zisis, T.: Analysis of the tilted shallow wedge problem in couple-stress elasticity. J. Elast. 144(2), 205–221 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cordero, N.M., Forest, S., Busso, E.P.: Second strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 97, 92–124 (2016)

    Article  MathSciNet  Google Scholar 

  36. Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. A, Solids 69, 179–191 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ma, H., Gao, X.-L.: A new homogenization method based on a simplified strain gradient elasticity theory. Acta Mech. 225(4), 1075–1091 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lurie, S., Volkov-Bogorodsky, D., Leontiev, A., Aifantis, E.: Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials. Int. J. Eng. Sci. 49(12), 1517–1525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., Gołaszewski, M., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 31(4), 851–884 (2019)

    Article  MathSciNet  Google Scholar 

  40. Dell’Isola, F., Steigmann, D.J. (eds.): Discrete and Continuum Models for Complex Metamaterials. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  41. Solyaev, Y.: Self-consistent assessments for the effective properties of two-phase composites within strain gradient elasticity. Mech. Mater. 169, 104321 (2022)

    Article  Google Scholar 

  42. Lurie, S., Belov, P., Volkov-Bogorodsky, D., Tuchkova, N.: Interphase layer theory and application in the mechanics of composite materials. J. Mater. Sci. 41(20), 6693–6707 (2006)

    Article  Google Scholar 

  43. Charalambopoulos, A., Polyzos, D.: Plane strain gradient elastic rectangle in tension. Arch. Appl. Mech. 85(9), 1421–1438 (2015)

    Article  MATH  Google Scholar 

  44. Charalambopoulos, A., Gortsas, T., Polyzos, D.: On representing strain gradient elastic solutions of boundary value problems by encompassing the classical elastic solution. Mathematics 10(7), 1152 (2022)

    Article  Google Scholar 

  45. Solyaev, Y., Lurie, S., Korolenko, V.: Three-phase model of particulate composites in second gradient elasticity. Eur. J. Mech. A, Solids 78, 103853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Placidi, L., El Dhaba, A.R.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Solyaev, Y., Lurie, S., Altenbach, H., dell’Isola, F.: On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories. Int. J. Solids Struct. 239, 111433 (2022)

    Article  Google Scholar 

  48. Sternberg, E., Gurtin, M.: On the completeness of certain stress functions in the linear theory of elasticity. Proc. Fourth U.S. Nat. Cong. Appl. Mech. 44(67), 793–797 (1962)

    MathSciNet  Google Scholar 

  49. Gurtin, M.E.: The Linear Theory of Elasticity. Encyclopedia of Physics, vol. 6 A/2. Springer, New York (1972)

    Google Scholar 

  50. Truesdell, C.: Invariant and complete stress functions for general continua. Arch. Ration. Mech. Anal. 4(1), 1–29 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  51. Charalambopoulos, A., Tsinopoulos, S.V., Polyzos, D.: Plane strain gradient elastic rectangle in bending. Arch. Appl. Mech. 90(5), 967–986 (2020)

    Article  Google Scholar 

  52. Solyaev, Y.O., Lurie, S.A.: Trefftz collocation method for two-dimensional strain gradient elasticity. Int. J. Numer. Methods Eng. 122(3), 823–839 (2021)

    Article  MathSciNet  Google Scholar 

  53. Münch, I., Neff, P., Madeo, A., Ghiba, I.-D.: The modified indeterminate couple stress model: why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. J. Appl. Math. Mech. 97(12), 1524–1554 (2017)

    MathSciNet  Google Scholar 

  54. Lazar, M.: On gradient field theories: gradient magnetostatics and gradient elasticity. Philos. Mag. 94(25), 2840–2874 (2014)

    Article  Google Scholar 

  55. Jeffreys, H., Swirles, B.: Methods of Mathematical Physics. Cambridge University Press, New-York (1956)

    MATH  Google Scholar 

  56. Petrascheck, D., Folk, R.: the Helmholtz decomposition of decreasing and weakly increasing vector fields (2015). ArXiv preprint arXiv:1506.00235

  57. Petrascheck, D., Folk, R.: Helmholtz decomposition theorem and Blumenthal’s extension by regularization (2017). ArXiv preprint arXiv:1704.02287

  58. Lazar, M.: A non-singular continuum theory of point defects using gradient elasticity of bi-Helmholtz type. Philos. Mag. 99(13), 1563–1601 (2019)

    Article  Google Scholar 

  59. Lazar, M., Maugin, G.A., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43(6), 1787–1817 (2006)

    Article  MATH  Google Scholar 

  60. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. Part 2. McGraw-Hill, New-York (1953)

    MATH  Google Scholar 

  61. Lazar, M., Po, G.: On Mindlin’s isotropic strain gradient elasticity: green tensors, regularization, and operator-split. J. Micromech. Mol. Phys. 3(03n04), 1840008 (2018)

    Article  Google Scholar 

  62. Gao, X.-L., Ma, H.: Green’s function and Eshelby’s tensor based on a simplified strain gradient elasticity theory. Acta Mech. 207(3), 163–181 (2009)

    Article  MATH  Google Scholar 

  63. Gourgiotis, P., Zisis, T., Georgiadis, H.: On concentrated surface loads and Green’s functions in the toupin–Mindlin theory of strain-gradient elasticity. Int. J. Solids Struct. 130, 153–171 (2018)

    Article  Google Scholar 

  64. Ma, H., Hu, G., Wei, Y., Liang, L.: Inclusion problem in second gradient elasticity. Int. J. Eng. Sci. 132, 60–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Karlis, G., Charalambopoulos, A., Polyzos, D.: An advanced boundary element method for solving 2d and 3d static problems in Mindlin’s strain-gradient theory of elasticity. Int. J. Numer. Methods Eng. 83(11), 1407–1427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation (Grant number 22-79-10228).

Author information

Authors and Affiliations

Authors

Contributions

This work and writing of the manuscript were performed by the sole author.

Corresponding author

Correspondence to Yury Solyaev.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solyaev, Y. Complete General Solutions for Equilibrium Equations of Isotropic Strain Gradient Elasticity. J Elast (2023). https://doi.org/10.1007/s10659-023-10039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10659-023-10039-4

Keywords

Mathematics Subject Classification

Navigation