Skip to main content
Log in

Plane strain gradient elastic rectangle in bending

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present paper can be considered as an extension of the work (Charalambopoulos and Polyzos in Arch Appl Mech 85:1421–1438, 2015). The simplest possible elastostatic version of Mindlin’s strain gradient elastic (SGE) theory is employed for the solution of a SGE rectangle in bending under plane strain conditions. The equilibrium equations as well as expressions for all types of stresses and boundary conditions appearing in the considered rectangle are explicitly provided. An improved version of Mindlin’s solution procedure via potentials is proposed. Besides, an elegant solution representation that contains the solution of the corresponding classical elastic problem is demonstrated. Results of six plane strain bending problems, which reveal a significant diversification from the classical elasticity theory and specific features of the underlying microstructure, are addressed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Exadaktylos, G.E., Vardoulakis, I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335, 81–109 (2001)

    Article  Google Scholar 

  2. Polyzos, D., Fotiadis, D.I.: Derivation of Mindlin’s gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)

    Article  Google Scholar 

  3. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  5. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Polyzos, D., Tsepoura, K.G., Tsinopoulos, S.V., Beskos, D.E.: A boundary element method for solving 2D and 3D static gradient elastic problems, Part 1: integral formulation. Comput. Methods Appl. Mech. Eng. 192, 2845–2873 (2003)

    Article  MATH  Google Scholar 

  7. Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  9. Gourgiotis, P.A., Georgiadis, H.G.: Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tekoglu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008)

    Article  MATH  Google Scholar 

  11. Georgiadis, H.G., Anagnostou, D.S.: Problems of the Flamant–Boussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Neff, P., Jeong, J., Ramézani, H.: Subgrid interaction and micro-randomness: novel invariance requirements in infinitesimal gradient elasticity. Int. J. Solids Struct. 46, 4261–4276 (2009)

    Article  MATH  Google Scholar 

  13. Froiio, F., Zervos, A., Vardoulakis, I.: On natural boundary conditions in linear 2nd-grade elasticity in mechanics of generalized continua. In: Maugin GA, Metrikine AV (eds), pp. 211–221. Springer, Berlin (2010)

  14. Karlis, G.F., Charalambopoulos, A., Polyzos, D.: An advanced boundary element method for solving 2D and 3D static problems in Mindlin’s strain-gradient theory of elasticity. Int. J. Numer. Methods Eng. 83, 1407–1427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  16. Forest, S., Trinh, D.K.: Generalized continua and non homogeneous boundary conditions in homogenisation methods. ZAMM. Z. Angew. Math. Mech. 91(2), 90–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Forest, S., Sab, K.: Stress gradient continuum theory. Mech. Res. Commun. 40, 16–25 (2012)

    Article  Google Scholar 

  18. Sciarra, G., Vidoli, S.: Asymptotic fracture modes in strain-gradient elasticity: size effects and characteristic lengths for isotropic materials. J. Elast. 113, 27–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Broese, C., Tsakmakis, C., Beskos, D.E.: Mindlin’s micro-structural and gradient elasticity theories and their thermodynamics. J. Elast. 125, 87–132 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ojaghnezhada, F., Shodja, H.M.: Surface elasticity revisited in the context of second strain gradient theory. Mech. Mater. 93, 220–237 (2016)

    Article  Google Scholar 

  22. Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472, 20150755 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Polizzotto, C.: Stress gradient versus strain gradient constitutive models within elasticity. Int. J. Solids Struct. 51, 1809–1818 (2014)

    Article  Google Scholar 

  24. Polizzotto, C.: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int. J. Solids Struct. 90, 116–121 (2016)

    Article  Google Scholar 

  25. Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur J. Mech. A/Solids 61, 92–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lazar, M., Po, G.: On Mindlin’s isotropic strain gradient elasticity: green tensors, regularization and operator-split. J. Micromech. Mol. Phys. 3(3), 1840008 (2018)

    Article  Google Scholar 

  27. Bleustein, J.L.: Effects of micro-structure on the stress concentration at a sphere cavity. Int. J. Solids Struct. 2, 83–104 (1966)

    Article  Google Scholar 

  28. Cook, T.S., Weitsman, Y.: Strain-gradient effects around spherical inclusions and cavities. Int. J. Solids Struct. 2, 393–406 (1966)

    Article  Google Scholar 

  29. Eshel, N.N., Rosenfeld, G.: Effects of strain-gradient on the stress concentration at a cylindrical hole in a field of uniaxial tension. J. Eng. Math. 4(2), 97–111 (1970)

    Article  MATH  Google Scholar 

  30. Eshel, N.N., Rosenfeld, G.: Some two-dimensional exterior problems in a linear elastic solid of grade two, ZAMM- Z. Angew. Math. Mech. 53, 761–772 (1973)

    Article  MATH  Google Scholar 

  31. Eshel, N.N., Rosenfeld, G.: Axisymmetric problems in elastic materials of grade two. J. Frankl. Inst. 299(1), 43–51 (1975)

    Article  MATH  Google Scholar 

  32. Li, S., Miskioglu, I., Altan, B.S.: Solution to line loading of a semi-infinite solid in gradient elasticity. Int. J. Solids Struct. 41, 3395–3410 (2004)

    Article  MATH  Google Scholar 

  33. Anagnostou, D.S., Gourgiotis, P.A., Georgiadis, H.G.: The Cerruti problem in dipolar gradient elasticity. Math. Mech. Solids 20, 1088–1106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gourgiotis, P.A., Zisis, Th, Georgiadis, H.G.: On concentrated surface loads and Green’s functions in the Toupin–Mindlin theory of strain-gradient elasticity. Int. J. Solids Struct. 130–131, 153–171 (2018)

    Article  Google Scholar 

  35. Aravas, N., Giannakopoulos, A.E.: Plane asymptotic crack-tip solutions in gradient elasticity. Int. J. Solids Struct. 46, 4478–4503 (2009)

    Article  MATH  Google Scholar 

  36. Gao, X.-L., Ma, H.M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–779 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ma, H.M., Gao, X.-L.: Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical inclusion in a finite elastic matrix. Int. J. Solids Struct. 48(2011), 44–55 (2011)

    Article  MATH  Google Scholar 

  38. Charalambopoulos, A., Polyzos, D.: Plane strain gradient elastic rectangle in tension. Arch. Appl. Mech. 85, 1421–1438 (2015)

    Article  MATH  Google Scholar 

  39. Papargyri-Beskou, S., Tsinopoulos, S.V.: Lame’s strain potential method for plain gradient elasticity problems. Arch. Appl. Mech. 9–10, 1399–1419 (2015)

    Article  MATH  Google Scholar 

  40. Khakalo, S., Niiranen, J.: Gradient-elastic stress analysis near cylindrical holes in a plane under bi-axial tension fields. Int. J. Solids Struct. 110–111, 351–366 (2017)

    Article  Google Scholar 

  41. Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano- to macro-scales. Eur. J. Mech. A/Solids 71, 292–319 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct.40, 385–400 and 42, 4911–4912 (2003)

  43. Giannakopoulos, A.E., Stamoulis, K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44, 3440–3451 (2007)

    Article  MATH  Google Scholar 

  44. Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Papargyri-Beskou, S., Beskos, D.E.: Static analysis of gradient elastic bars, beams, plates and shells. Open Mech. J. 4, 65–73 (2010)

    Google Scholar 

  46. Lazopoulos, K.A., Lazopoulos, A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solids 29, 837–843 (2010)

    Article  Google Scholar 

  47. Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591–599 (2010)

    Article  Google Scholar 

  48. Xia, W., Wang, L., Yin, L.: Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)

    Article  MATH  Google Scholar 

  50. Giannakopoulos, A.E., Petridis, S., Sophianopoulos, D.S.: Dipolar gradient elasticity of cables. Int. J. Solids Struct. 49, 1259–1265 (2012)

    Article  Google Scholar 

  51. Amiot, F.: An Euler–Bernoulli second strain gradient beam theory for cantilever sensors. Philos. Mag. Lett. 93(4), 204–212 (2013)

    Article  Google Scholar 

  52. Challamel, N.: Higher-order shear beam theories and enriched continuum. Mech. Res. Commun. 38, 388–392 (2011)

    Article  MATH  Google Scholar 

  53. Challamel, N.: Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams. Compos. Struct. 105, 351–368 (2013)

    Article  Google Scholar 

  54. Triantafyllou, A., Giannakopoulos, A.E.: Structural analysis using a dipolar elastic Timoshenko beam. Eur. J. Mech. A/Solids 39, 218–228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Eltaher, M.A., Hamed, M.A., Sadoun, A.M., Mansour, A.: Mechanical analysis of higher order gradient nanobeams. Appl. Math. Comput. 229, 260–272 (2014)

    MathSciNet  MATH  Google Scholar 

  56. Jafari, A., Ezzati, M.: Investigating the non-classical boundary conditions relevant to strain gradient theories. Physica E 86, 88–102 (2017)

    Article  Google Scholar 

  57. Gortsas, T., Tsinopoulos, S.V., Rodopoulos, D., Polyzos, D.: Strain gradient elasticity and size effects in the bending of fiber composite plates. Int. J. Solids Struct. 143, 103–112 (2018)

    Article  Google Scholar 

  58. Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 2. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demosthenes Polyzos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

This appendix deals with the proof of Theorem 1 stated in Section 4 of the present work.

We consider the vector Helmholtz decomposition of the displacement vector, i.e.,

$$\begin{aligned} \mathbf{u}=\nabla \varphi +\nabla \times \mathbf{A},\quad \nabla \cdot \mathbf{A}=0 \end{aligned}$$
(A.1)

Inserting (A.1) into (24), one obtains

$$\begin{aligned} \left( {1-g^{2}\nabla ^{2}} \right) \nabla ^{2}\left[ {(\lambda +2\mu )\nabla \varphi +\mu \nabla \times \mathbf{A}} \right] +\mathbf{F}=\mathbf{0} \end{aligned}$$
(A.2)

Defining as

$$\begin{aligned} \mathbf{B}=\frac{\lambda +2\mu }{\mu }\nabla \varphi +\nabla \times \mathbf{A} \end{aligned}$$
(A.3)

Equation (A.2) is simplified to

$$\begin{aligned} \mu \left( {1-g^{2}\nabla ^{2}} \right) \nabla ^{2}{} \mathbf{B}=-\mathbf{F} \end{aligned}$$
(A.4)

From (A.3) and (A.4), we obtain the relations

$$\begin{aligned}&\nabla \cdot \mathbf{B}=\frac{\lambda +2\mu }{\mu }\nabla ^{2}\varphi \end{aligned}$$
(A.5)
$$\begin{aligned}&(\lambda +2\mu )\left( {1-g^{2}\nabla ^{2}} \right) \nabla ^{2}\nabla ^{2}\varphi =-\nabla \cdot \mathbf{F} \end{aligned}$$
(A.6)

In the sequel, taking the inner product of Eq. (A.4) with the position vector \(\mathbf{r}\), utilizing the identity \(\nabla ^{2}\left( {\mathbf{r}\cdot \mathbf{a}} \right) =\mathbf{r}\cdot \nabla ^{2}{} \mathbf{a}+2\nabla \cdot \mathbf{a}\) and making use of Eq. (A.5), one yields

$$\begin{aligned}&\mu \nabla ^{2}\left[ {\mathbf{r}\cdot \left( {1-g^{2}\nabla ^{2}} \right) \mathbf{B}} \right] -2(\lambda +2\mu )\nabla ^{2}\phi \nonumber \\&\quad +2g^{2}(\lambda +2\mu )\nabla ^{2}\nabla ^{2}\varphi =-\mathbf{r}\cdot \mathbf{F} \end{aligned}$$
(A.7)

Applying the operator \(\left( {1-g^{2}\nabla ^{2}} \right) \) on Eq. (A.7) and taking into account Eq. (A.6), Eq. (A.7) is transformed to

$$\begin{aligned} \begin{array}{l} \mu \left( {1-g^{2}\nabla ^{2}} \right) \nabla ^{2}\left[ {\mathbf{r}\cdot \left( {1-g^{2}\nabla ^{2}} \right) \mathbf{B}-2\frac{\lambda +2\mu }{\mu }\varphi } \right] \\ =-\left( {1-g^{2}\nabla ^{2}} \right) \left( {\mathbf{r}\cdot \mathbf{F}} \right) +2g^{2}\nabla \cdot \mathbf{F} \\ \end{array} \end{aligned}$$
(A.8)

Making use of the identity

$$\begin{aligned} \left( {1-g^{2}\nabla ^{2}} \right) \left( {\mathbf{r}\cdot \mathbf{F}} \right) =\mathbf{r}\cdot \left( {1-g^{2}\nabla ^{2}} \right) \mathbf{F}-2g^{2}\nabla \cdot \mathbf{F} \end{aligned}$$
(A.9)

Eq. (A.8) reads

$$\begin{aligned} \mu \left( {1-g^{2}\nabla ^{2}} \right) \nabla ^{2}B_0 =\mathbf{r}\cdot \left( {1-g^{2}\nabla ^{2}} \right) \mathbf{F}-4g^{2}\nabla \cdot \mathbf{F} \end{aligned}$$
(A.10)

with

$$\begin{aligned} B_0 =-\mathbf{r}\cdot \left( {1-g^{2}\nabla ^{2}} \right) \mathbf{B}+2\frac{\lambda +2\mu }{\mu }\varphi \end{aligned}$$
(A.11)

Finally, starting from Eq. (A.1) we have the following algebra

$$\begin{aligned} \mathbf{u}&=\nabla \varphi +\nabla \times \mathbf{A}\mathop =\limits ^{Eq.(B.3)} \nabla \varphi +\mathbf{B}-\frac{\lambda +2\mu }{\mu }\nabla \varphi \nonumber \\&=\mathbf{B}-\frac{\lambda +\mu }{\mu }\nabla \varphi \nonumber \\&\mathop =\limits ^{Eq.(B.11)} \mathbf{B}-\frac{\lambda +\mu }{\mu }\nabla \frac{\mu }{2(\lambda +2\mu )}[\mathbf{r}\cdot (1-g^{2}\nabla ^{2})\mathbf{B}+B_0 ] \nonumber \\&=\mathbf{B}-\frac{\lambda +\mu }{2(\lambda +2\mu )}\nabla [\mathbf{r}\cdot (1-g^{2}\nabla ^{2})\mathbf{B}+B_0 ] \end{aligned}$$
(A.12)

Equation (A.12) in conjunction with (A.4) and (A.10) readily shows the validity of the present theorem 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charalambopoulos, A., Tsinopoulos, S.V. & Polyzos, D. Plane strain gradient elastic rectangle in bending. Arch Appl Mech 90, 967–986 (2020). https://doi.org/10.1007/s00419-019-01649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01649-3

Keywords

Navigation