Skip to main content
Log in

On the Role of Curvature in the Elastic Energy of Non-Euclidean Thin Bodies

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We prove a relation between the scaling \(h^{\beta}\) of the elastic energies of shrinking non-Euclidean bodies \(\mathcal{S}_{h}\) of thickness \(h\to0\), and the curvature along their mid-surface \(\mathcal{S}\). This extends and generalizes similar results for plates (Bhattacharya et al., Arch. Ration. Mech. Anal. 221(1):143–181, 2016; Lewicka et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34:1883–1912, 2017) to any dimension and co-dimension. In particular, it proves that the natural scaling for non-Euclidean rods with smooth metric is \(h^{4}\), as claimed in Aharoni et al. (Phys. Rev. Lett. 108:235106, 2012) using a formal asymptotic expansion. The proof involves calculating the \(\varGamma \)-limit for the elastic energies of small balls \(B_{h}(p)\), scaled by \(h^{4}\), and showing that the limit infimum energy is given by a square of a norm of the curvature at a point \(p\). This \(\varGamma\)-limit proves asymptotics calculated in Aharoni et al. (Phys. Rev. Lett. 117:124101, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that this does not imply that \(\mathcal{S}\) is flat, which is \(\mathcal{R}^{\mathcal{S}}\equiv0\).

  2. Note that for different choices of \(Q_{h}\) we can have that \(v_{h}\) converge to different functions; however we can further require that \(\int_{B} f = 0\), \(\int_{B} \operatorname{Skew}(df) = 0\). In this case there is no ambiguity.

  3. The main theorem in [36] only states the uniqueness of \(F\), however its proof (specifically, the last paragraph on p. 34) shows the uniqueness of \(q^{\perp }\) as well.

References

  1. Agostiniani, V., Lucantonio, A., Lučić, D.: Heterogeneous elastic plates with in-plane modulation of the target curvature and applications to thin gel sheets. Preprint (2017)

  2. Aharoni, H., Abraham, Y., Elbaum, R., Sharon, E., Kupferman, R.: Emergence of spontaneous twist and curvature in non-Euclidean rods: application to Erodium plant cells. Phys. Rev. Lett. 108, 238106 (2012)

    Article  ADS  Google Scholar 

  3. Aharoni, H., Kolinski, J.M., Moshe, M., Meirzada, I., Sharon, E.: Internal stresses lead to net forces and torques on extended elastic bodies. Phys. Rev. Lett. 117, 124101 (2016)

    Article  ADS  Google Scholar 

  4. Armon, S., Efrati, E., Sharon, E., Kupferman, R.: Geometry and mechanics of chiral pod opening. Science 333, 1726–1730 (2011)

    Article  ADS  Google Scholar 

  5. Bella, P., Kohn, R.V.: Metric-induced wrinkling of a thin elastic sheet. J. Nonlinear Sci. 24(6), 1147–1176 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bhattacharya, K., Lewicka, M., Schäffner, M.: Plates with incompatible prestrain. Arch. Ration. Mech. Anal. 221(1), 143–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bilby, B.A., Smith, E.: Continuous distributions of dislocations, III. Proc. R. Soc. Edinb. A 236, 481–505 (1956)

    ADS  MathSciNet  Google Scholar 

  8. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of Non-Riemannian geometry. Proc. R. Soc. A 231, 263–273 (1955)

    ADS  MathSciNet  Google Scholar 

  9. Chen, B.Y.: Riemannian submanifolds: a survey. In: Dillen, F., Verstraelen, L. (eds.) Handbook of Differential Geometry, vol. 1, pp. 187–418 (2000)

    Google Scholar 

  10. Ciarlet, P.G.: Mathematical Elasticity, vol. 1: Three-Dimensional Elasticity. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  11. Ciarlet, P.G.: An Introduction to Differential Geometry with Applications to Elasticity. Springer, Netherlands (2005)

    MATH  Google Scholar 

  12. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  13. Cicalese, M., Ruf, M., Solombrino, F.: On global and local minimizers of prestrained thin elastic rods. Calc. Var. Partial Differ. Equ. 56(4), 115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Conti, S., Olbermann, H., Tobasco, I.: Symmetry breaking in indented elastic cones. Math. Models Methods Appl. Sci. 27(2), 291–321 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  16. Efrati, E., Sharon, E., Kupferman, R.: Buckling transition and boundary layer in non-Euclidean plates. Phys. Rev. E 80, 016602 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57, 762–775 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Efrati, E., Sharon, E., Kupferman, R.: Hyperbolic non-Euclidean elastic strips and almost minimal surfaces. Phys. Rev. E 83, 046602 (2011)

    Article  ADS  Google Scholar 

  19. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by \(\varGamma \)-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grossman, D., Sharon, E., Diamant, H.: Elasticity and fluctuations of frustrated nanoribbons. Phys. Rev. Lett. 116, 258105 (2016)

    Article  ADS  Google Scholar 

  22. Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116–1120 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kohn, R.V., O’Brien, E.: On the bending and twisting of rods with misfit. J. Elast. 130(1), 115–143 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kondo, K.: Geometry of elastic deformation and incompatibility. In: Kondo, K. (ed.) Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, vol. 1, pp. 5–17 (1955)

    Google Scholar 

  25. Kupferman, R., Maor, C.: A Riemannian approach to the membrane limit in non-Euclidean elasticity. Commun. Contemp. Math. 16(5), 1350052 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kupferman, R., Shamai, Y.: Incompatible elasticity and the immersion of non-flat Riemannian manifolds in Euclidean space. Isr. J. Math. 190(1), 135–156 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kupferman, R., Solomon, J.P.: A Riemannian approach to reduced plate, shell, and rod theories. J. Funct. Anal. 266, 2989–3039 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kupferman, R., Maor, C., Shachar, A.: Reshetnyak Rigidity for Riemannian Manifolds. Arch. Rat. Mech. Anal. to appear in. https://arxiv.org/abs/1701.08892

  29. Le-Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Le-Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6(1), 59–84 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Lewicka, M., Pakzad, M.R.: Scaling laws for non-Euclidean plates and the \(W^{2,2}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17, 1158–1173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lewicka, M., Raoult, A., Ricciotti, D.: Plates with incompatible prestrain of higher order. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, 1883–1912 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Olbermann, H.: Energy scaling law for a single disclination in a thin elastic sheet. Arch. Ration. Mech. Anal. 224(3), 985–1019 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032902 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys. Rev. E 75, 046211 (2007)

    Article  ADS  Google Scholar 

  36. Tenenblat, K.: On isometric immersions of Riemannian manifolds. Bol. Soc. Bras. Mat. 2, 23–36 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Robert Jerrard for some useful advice and suggestions during the preparation of this paper, and Raz Kupferman for his critical reading of the manuscript. The second author was partially funded by the Israel Science Foundation (Grant No. 661/13), and by a grant from the Ministry of Science, Technology and Space, Israel and the Russian Foundation for Basic Research, the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf Shachar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maor, C., Shachar, A. On the Role of Curvature in the Elastic Energy of Non-Euclidean Thin Bodies. J Elast 134, 149–173 (2019). https://doi.org/10.1007/s10659-018-9686-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9686-1

Keywords

Mathematics Subject Classification

Navigation