Skip to main content
Log in

Cell death induced by fumonisin B1 in two maize hybrids: correlation with oxidative status biomarkers and salicylic and jasmonic acids imbalances

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fungal and plant secondary metabolites modulate host-pathogen interactions. However, the participation of fumonisin B1 (FB1) in the Fusarium verticillioides-maize pathosystem is unclear. In this work, cell death and the reactive oxygen species-phytohormone imbalance interplay as well as their correlation with the FB1 phytotoxicity in two maize genotypes with contrasting resistance to Fusarium ear rot were studied. Resistant (RH) and susceptible hybrid (SH) maize seedlings, grown from uninoculated seeds irrigated with FB1 (1 and 20 μg/mL), were harvested at 7, 14 and 21 days after planting, and were examined for electrolyte leakage (aerial parts) and for oxidative stress biomarkers (aerial parts and roots). The salicylic/jasmonic acid levels associated with cytotoxicity were further explored in seedlings exposed 24 h to FB1 (1 μg/mL) in hydroponics, with and without pre-treatment with the antioxidant ascorbic acid (AA). Cell death increased in RH and SH watered with 1 and 20 μg/mL of mycotoxin, respectively. Both toxin concentrations were pro-oxidant, and the major perturbations were found in roots. The overall plant stress, estimated by an Integrated Biomarker Response index, was higher in plants treated with 20 μg/mL of FB1, while treatment with 1 μg/mL caused more stress in RH at 21 days. Different phytohormone changes were found in both hybrids: salicylic acid increases (prevented by AA) in RH, and jasmonic acid decreases in both germplasms (although prevented by AA pre-treatment only in SH). Cell death induced by FB1 was associated with different phytohormonal regulatory mechanisms in both maize genotypes, some of which were mediated by the redox status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

AA:

ascorbic acid

CAT:

catalase

dap:

days after planting

EL:

electrolyte leakage

FB1:

fumonisin B1

GPOX:

guaiacol peroxidase

JA:

jasmonic acid

MDA:

malondialdehyde

O2 •- :

superoxide radical anion

RH:

resistant hybrid

ROS:

reactive oxygen species

SA:

salicylic acid

SH:

susceptible hybrid

SOD:

superoxide dismutase

TBA:

thiobarbituric acid

TBARS:

thiobarbituric acid reactive substances

TCA:

trichloroacetic acid

References

  • Abbas, H. K., Tanaka, T., Duke, S. O., Porter, J. K., Wray, E. M., Hodges, L., Sessions, A. E., Wang, E., Merrill Jr., A. H., & Riley, R. T. (1994). Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free Sphingoid bases. Plant Physiology, 106, 1085–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas, H. K., Accinelli, C., Zablotowicz, R. M., Abel, C. A., Bruns, H. A., Dong, Y., & Shier, W. T. (2008). Dynamics of mycotoxin and aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions. Journal of Agricultural and Food Chemistry, 56, 7578–7585.

    Article  CAS  PubMed  Google Scholar 

  • Aiassa, V., Barnes, A. I., & Albesa, I. (2010). Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochemical and Biophysical Research Communications, 393, 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24, 1337–1344.

    Article  CAS  Google Scholar 

  • Arias, S. L., Theumer, M. G., Mary, V. S., & Rubinstein, H. R. (2012). Fumonisins: Probable role as effectors in the complex interaction of susceptible and resistant maize hybrids and Fusarium verticillioides. Journal of Agricultural and Food Chemistry, 60, 5667–5675.

    Article  CAS  PubMed  Google Scholar 

  • Arias, S. L., Mary, V. S., Otaiza, S. N., Wunderlin, D. A., Rubinstein, H. R., & Theumer, M. G. (2016). Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings. Phytochemistry, 125, 54–64.

    Article  CAS  PubMed  Google Scholar 

  • Asai, T., Stone, J. M., Heard, J. E., Kovtun, Y., Yorgey, P., Sheen, J., & Ausubel, F. M. (2000). Fumonisin B1-induced cell death in arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell, 12, 1823–1836.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balint-Kurti, P. (2019). The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology, 20, 1163–1178.

    PubMed  PubMed Central  Google Scholar 

  • Bartoli, C. G., Casalongué, C. A., Simontacchi, M., Marquez-Garcia, B., & Foyer, C. H. (2013). Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany, 94, 73–88.

    Article  CAS  Google Scholar 

  • Beliaeff, B., & Burgeot, T. (2002). Integrated biomarker response: A useful tool for ecological risk assessment. Environmental Toxicology and Chemistry, 21, 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  • Berthiller, F., Crews, C., Dall'Asta, C., Saeger, S. D., Haesaert, G., Karlovsky, P., Oswald, I. P., Seefelder, W., Speijers, G., & Stroka, J. (2013). Masked mycotoxins: A review. Molecular Nutrition & Food Research, 57, 165–186.

    Article  CAS  Google Scholar 

  • Bertrand, L., Asis, R., Monferrán, M. V., & Amé, M. V. (2016). Bioaccumulation and biochemical response in south American native species exposed to zinc: Boosted regression trees as novel tool for biomarkers selection. Ecological Indicators, 67, 769–778.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Cao, A., Santiago, R., Ramos, A. J., Marín, S., Reid, L. M., & Butrón, A. (2013). Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. International Journal of Food Microbiology, 164, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • CAST (2003). Mycotoxins: Risks in plant, animal and human. Potential economic costs of mycotoxins in United States. CAST task force reports, Council for Agricultural Science and Technology, Ames (IA), pp. 136–142.

  • Caverzan, A., Casassola, A., & Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology, 39, 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiotta, M. L., Fumero, M. V., Cendoya, E., Palazzini, J. M., Alaniz-Zanon, M. S., Ramirez, M. L., & Chulze, S. N. (2020). Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina de Microbiología., 52, 339–347.

    Article  PubMed  Google Scholar 

  • Dantzer, W. R., Pometto 3rd, A. L., & Murphy, P. A. (1996). Fumonisin B1 production by Fusarium proliferatum strain M5991 in a modified Myro liquid medium. Natural Toxins, 4, 168–173.

    Article  CAS  PubMed  Google Scholar 

  • Dastjerdi, R., & Karlovsky, P. (2015). Systemic infection of maize, sorghum, rice, and beet seedlings with Fumonisin-producing and nonproducing Fusarium verticillioides strains. Plant Pathology Journal, 31, 334–342.

    Article  CAS  Google Scholar 

  • de la Torre-Hernandez, M. E., Rivas-San, V. M., Greaves-Fernandez, N., Cruz-Ortega, R., & Plasencia, J. (2010). Fumonisin B1 induces nuclease activation and salicylic acid accumulation through long-chain sphingoid base build-up in germinating maize. Physiological and Molecular Plant Pathology, 74, 337–345.

    Article  Google Scholar 

  • del Pozo, O., & Lam, E. (1998). Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Current Biology, 8, 1129–1132.

    Article  PubMed  Google Scholar 

  • Desjardins, A. E., & Plattner, R. D. (2000). Fumonisin B(1)-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. Journal of Agricultural and Food Chemistry, 48, 5773–5780.

    Article  CAS  PubMed  Google Scholar 

  • Devin, S., Burgeot, T., Giamberini, L., Minguez, L., & Pain-Devin, S. (2014). The integrated biomarker response revisited: Optimization to avoid misuse. Environmental Science and Pollution Research International, 21, 2448–2454.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2009). Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxidants & Redox Signaling, 11, 861–905.

    Article  CAS  Google Scholar 

  • Frisvad, J. C., Larsen, T. O., Thrane, U., Meijer, M., Varga, J., Samson, R. A., & Nielsen, K. F. (2011). Fumonisin and ochratoxin production in industrial aspergillus Niger strains. PLoS One, 6, e23496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Glenn, A. E., Zitomer, N. C., Zimeri, A. M., Williams, L. D., Riley, R. T., & Proctor, R. H. (2008). Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Molecular Plant-Microbe Interactions, 21, 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Glenz, R., Schmalhaus, D., Krischke, M., Mueller, M. J., & Waller, F. (2019). Elevated levels of phosphorylated Sphingobases do not antagonize Sphingobase- or Fumonisin B1-induced plant cell death. Plant and Cell Physiology, 60, 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751–757.

    Article  CAS  PubMed  Google Scholar 

  • Heath, M. C. (2000). Hypersensitive response-related death. Plant Molecular Biology, 44, 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, D., Bethke, G., Xu, Y., Tsuda, K., Glazebrook, J., & Katagiri, F. (2013). Pattern-triggered immunity suppresses programmed cell death triggered by Fumonisin B1. PLoS One, 8, e60769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCS-WHO (2000). Fumonisin B1. Environmental Health Criteria 219. In: International Programme on Chemical Safety (Ed.), World Health Organization, Geneva.

  • Iqbal, N., Czékus, Z., Poór, P., & Ördög, A. (2021). Plant defence mechanisms against mycotoxin Fumonisin B1. Chemico-Biological Interactions., 343, 109494.

    Article  CAS  PubMed  Google Scholar 

  • Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology, 44, 41–60.

    Article  CAS  PubMed  Google Scholar 

  • Klessig, D. F., Choi, H. W., & Dempsey, D. M. A. (2018). Systemic acquired resistance and salicylic acid: Past, present, and future. Molecular Plant-Microbe Interactions, 31, 871–888.

    Article  CAS  PubMed  Google Scholar 

  • Kwak, J. M., Nguyen, V., & Schroeder, J. I. (2006). The role of reactive oxygen species in hormonal responses. Plant Physiology, 141, 323–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laguna, I. G., Conci, L., Conforto, C. G. E., Giménez Pecci, M. D. P., González, M., Guzmán, F. I. M., Lenanrdon, S., Marino de Remes Lenicov, A. M., Pérez, B. A. D. P., Rodríguez Pardina, P. S. M., Sillon, M., Truol, G., Copia, P., & Botta, G. (2010). Enfermedades de Zea mays L. (maíz). Atlas Fitopatológico, 3.

  • Lanubile, A., Ferrarini, A., Maschietto, V., Delledonne, M., Marocco, A., & Bellin, D. (2014). Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 15, 710.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanubile, A., Maschietto, V., Borrelli, V. M., Stagnati, L., Logrieco, A. F., & Marocco, A. (2017). Molecular basis of resistance to Fusarium ear rot in maize. Frontiers in Plant Science, 8, 1774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loake, G., & Grant, M. (2007). Salicylic acid in plant defence—The players and protagonists. Current Opinion in Plant Biology, 10, 466–472.

    Article  CAS  PubMed  Google Scholar 

  • Maschietto, V., Lanubile, A., Leonardis, S. D., Marocco, A., & Paciolla, C. (2016). Constitutive expression of pathogenesis-related proteins and antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides. Journal of Plant Physiology, 200, 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Monferran, M. V., Agudo, J. A., Pignata, M. L., & Wunderlin, D. A. (2009). Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environmental Pollution, 157, 2570–2576.

    Article  CAS  PubMed  Google Scholar 

  • Musser, S. M. (1996). Quantitation and identification of fumonisins by liquid chromatography/mass spectrometry. Advances in Experimental Medicine and Biology, 392, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: An illustrated manual for identification. Pennsylvania State University Press.

  • Noctor, G., Reichheld, J.-P., & Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 80, 3–12.

    Article  CAS  Google Scholar 

  • Overmyer, K., Brosché, M., & Kangasjärvi, J. (2003). Reactive oxygen species and hormonal control of cell death. Trends in Plant Science, 8, 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Pan, X., Welti, R., & Wang, X. (2008). Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 69, 1773–1781.

    Article  CAS  PubMed  Google Scholar 

  • Parsons, M. W., & Munkvold, G. P. (2010). Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Additives & Contaminants: Part A, 27, 591–607.

    Article  CAS  Google Scholar 

  • Presello, D. A., Iglesias, J., Botta, G., Reid, L. M., Lori, G. A., & Eyherabide, G. H. (2006). Stability of maize resistance to the ear rots caused by Fusarium graminearum and F. verticillioides in Argentinian and Canadian environments. Euphytica, 147, 403–407.

    Article  Google Scholar 

  • Presello, D., Iglesias, J., Fernández, M., Fauguel, C., Eyhérabide, G., & Lorea, R. (2009). Reacción de cultivares a hongos productores de micotoxinas en maíz. Instituto Nacional de Tecnología Agropecuaria.

  • Proctor, R. H., Desjardins, A. E., Plattner, R. D., & Hohn, T. M. (1999). A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population a. Fungal Genetics and Biology, 27, 100–112.

  • Pujol, I., Guarro, J., Llop, C., Soler, L., & Fernandez-Ballart, J. (1996). Comparison study of broth macrodilution and microdilution antifungal susceptibility tests for the filamentous fungi. Antimicrobial Agents and Chemotherapy, 40, 2106–2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pusztahelyi, T., Holb, I. J., & Pocsi, I. (2015). Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science, 6, 573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rheeder, J. P., Marasas, W. F., & Vismer, H. F. (2002). Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology, 68, 2101–2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J. E., Rodermel, S., Inze, D., & Mittler, R. (2002). Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. The Plant Journal, 32, 329–342.

    Article  CAS  PubMed  Google Scholar 

  • Santiago, R., Cao, A., & Butron, A. (2015). Genetic factors involved in Fumonisin accumulation in maize kernels and their implications in maize agronomic management and breeding. Toxins (Basel), 7, 3267–3296.

    Article  CAS  Google Scholar 

  • Saucedo-Garcia, M., Gonzalez-Solis, A., Rodriguez-Mejia, P., Olivera-Flores Tde, J., Vazquez-Santana, S., Cahoon, E. B., & Gavilanes-Ruiz, M. (2011). Reactive oxygen species as transducers of sphinganine-mediated cell death pathway. Plant Signaling & Behavior, 6, 1616–1619.

    Article  CAS  Google Scholar 

  • Selin, C., de Kievit, T. R., Belmonte, M. F., & Fernando, W. G. (2016). Elucidating the role of effectors in plant-fungal interactions: Progress and challenges. Frontiers in Microbiology, 7, 600.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shephard, G. S., Sydenham, E. W., Thiel, P. G., & Gelderblom, W. C. A. (1990). Quantitative determination of fumonisins B1 and B2 by high performance liquid chromatography with fluorescence detection. Journal of Liquid Chromatography, 13, 2077–2087.

    Article  CAS  Google Scholar 

  • Stone, J. M., Heard, J. E., Asai, T., & Ausubel, F. M. (2000). Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant(fbr) Arabidopsis mutants. Plant Cell, 12, 1811–1822.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Susca, A., Moretti, A., Stea, G., Villani, A., Haidukowski, M., Logrieco, A., & Munkvold, G. (2014). Comparison of species composition and fumonisin production in Aspergillus section Nigri populations in maize kernels from USA and Italy. International Journal of Food Microbiology, 188, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Theumer, M. G., Lopez, A. G., Aoki, M. P., Canepa, M. C., & Rubinstein, H. R. (2008). Subchronic mycotoxicoses in rats. Histopathological changes and modulation of the sphinganine to sphingosine (Sa/So) ratio imbalance induced by Fusarium verticillioides culture material, due to the coexistence of aflatoxin B1 in the diet. Food and Chemical Toxicology, 46, 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Wu, Q., Wan, D., Liu, Q., Chen, D., Liu, Z., Martinez-Larranaga, M. R., Martinez, M. A., Anadon, A., & Yuan, Z. (2016). Fumonisins: Oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Archives of Toxicology, 90, 81–101.

    Article  CAS  PubMed  Google Scholar 

  • Waskiewicz, A., Bocianowski, J., Perczak, A., & Golinski, P. (2015). Occurrence of fungal metabolites--fumonisins at the ng/L level in aqueous environmental samples. Science of the Total Environment, 524-525, 394–399.

    CAS  Google Scholar 

  • Williams, L. D., Glenn, A. E., Zimeri, A. M., Bacon, C. W., Smith, M. A., & Riley, R. T. (2007). Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease. Journal of Agricultural and Food Chemistry, 55, 2937–2946.

    Article  CAS  PubMed  Google Scholar 

  • Xing, F., Li, Z., Sun, A., & Xing, D. (2013). Reactive oxygen species promote chloroplast dysfunction and salicylic acid accumulation in fumonisin B1-induced cell death. FEBS Letters, 587, 2164–2172.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Wu, Q., Cui, S., Ren, J., Qian, W., Yang, Y., He, S., Chu, J., Sun, X., Yan, C., Yu, X., & An, C. (2015). Hijacking of the jasmonate pathway by the mycotoxin fumonisin B1 (FB1) to initiate programmed cell death in Arabidopsis is modulated by RGLG3 and RGLG4. Journal of Experimental Botany, 66, 2709–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Wang, J., Liu, Y., Miao, H., Cai, C., Shao, Z., Guo, R., Sun, B., Jia, C., Zhang, L., Gigolashvili, T., & Wang, Q. (2015). Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. The Plant Journal, 81, 920–933.

    Article  CAS  PubMed  Google Scholar 

  • Zitomer, N. C., Jones, S., Bacon, C., Glenn, A. E., Baldwin, T., & Riley, R. T. (2010). Translocation of sphingoid bases and their 1-phosphates, but not fumonisins, from roots to aerial tissues of maize seedlings watered with fumonisins. Journal of Agricultural and Food Chemistry, 58, 7476–7481.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Secretaría de Ciencia y Tecnología (SECyT-UNC, grants 33620180101257CB and 34020190100081CB); Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Argentina (ANPCyT, grants PICT 2015-2810; PICT 2019-03229 and PICT 2019-04329); and Ministerio de Ciencia y Tecnología, Córdoba (MINCyT-Cba, grants PE-2019 Theca-free, and GRFT 2019). MGR holds fellowship from ANPCyT. SNOG and PAV hold fellowships from the National Research Council from Argentina (CONICET). MGT, VSM and LB are career investigators of the latter institution.

We thank Ms. Silvina A. Colla, Sworn Translator of English, for the linguistic revision of the manuscript. The content of this work is the sole responsibility of their authors and does not necessarily represent the official views of the organisms that funded this research.

Author information

Authors and Affiliations

Authors

Contributions

Theumer M.G. conceived and designed research. Otaiza-González S.N. conducted experiments. Arias S.L, Mary V.S., Bertrand L., Velez P.A., Rodriguez M.G. y Rubinstein H.R. contributed to conduct experiments and analyse data. Otaiza-González S.N. and Theumer M.G. wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Martín G. Theumer.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors give their consent for the publication of the manuscript in the European Journal of Plant Pathology.

Conflict of interest

The authors declare no conflict of interests.

Supplementary Information

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otaiza-González, S.N., Mary, V.S., Arias, S.L. et al. Cell death induced by fumonisin B1 in two maize hybrids: correlation with oxidative status biomarkers and salicylic and jasmonic acids imbalances. Eur J Plant Pathol 163, 203–221 (2022). https://doi.org/10.1007/s10658-022-02469-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02469-y

Keywords

Navigation