Skip to main content
Log in

Morphological characteristics and genetic diversity of Colletotrichum horii infecting persimmon tree in China

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Anthracnose is the most devastating disease affecting persimmon (Diospyros kaki Thunb.) cultivars in China, and is caused by the pathogen recently identified as Colletotrichum horii. In this study, the symptoms of anthracnose in persimmon fruits and trees in China, and the morphological characteristics of C. horii, were observed and recorded. Thirty simple sequence repeat (SSR) markers for C. horii were developed from the whole genome of the closely related species C. gloeosporioides, which is available from the GenBank database. After screening 30 combinations of primer pairs, six SSR markers were selected to amplify the genomic DNA of 23 isolates, to assess the degree of polymorphism and the reproducibility of the SSR markers. A total of 164 discernible bands were obtained when visualizing the amplicons by electrophoresis, 156 of which showed polymorphism. A dendrogram was constructed with FreeTree software (ver. 0.9.1.50) and the similarity coefficients ranged from 0.58–0.98. The result indicated there was genetic diversity in the C. horii population in China. There was an obvious correlation between the cluster groups and the sites from which the samples were isolated. The results of this study will facilitate a more detailed understanding of the population structure of C. horii in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal, M., Shrivastava, N., & Padh, H. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports, 4, 617–631. https://doi.org/10.1007/s00299-008-0507-z.

    Article  CAS  Google Scholar 

  • Cai, L., Hyde, K., Taylor, P., Weir, B., Waller, J., Abang, M., Zhang, J.-Z., Yang, Y.-L., Phoulivong, S., Liu, Z.-Y., Prihastuti, H., Shivas, R., McKenzie, E., & Johnston, P. (2009). A polyphasic approach for studying Colletotrichum. Fungal Diversity, 2, 183–204.

    Google Scholar 

  • Chung, K.-R., Shilts, T., Ertürk, Ü., Timmer, L.-W., & Ueng, P.-P. (2003). Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters, 226(1), 23–30. https://doi.org/10.1016/s0378-1097(03)00605-0.

    Article  CAS  PubMed  Google Scholar 

  • Damm, U., Baroncelli, R., Cai, L., Kubo, Y., O’Connell, R., Weir, B., Yoshino, K., & Cannon, P. (2010). Colletotrichum: Species, ecology and interactions. IMA Fungus, 2, 161–165. https://doi.org/10.5598/imafungus.2010.01.02.08.

    Article  Google Scholar 

  • Dobrowolski, M., Tommerup, I., Blakeman, H., & O’Brien, P. (2002). Non-Mendelian inheritance revealed in a genetic analysis of sexual progeny of Phytophthora cinnamomi with microsatellite markers. Fungal Genetics and Biology, 35, 197–212. https://doi.org/10.1006/fgbi.2001.1319.

    Article  CAS  PubMed  Google Scholar 

  • Fajolu, O., Wadl, P., Vu, A., Gwinn, K., Scheffler, B., Trigiano, R., & Ownley, B. (2013). Development and characterization of simple sequence repeats for Bipolaris sorokiniana and cross transferability to related species. Mycologia, 105, 1164. https://doi.org/10.3852/12-210.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Disease, 82, 596–605.

    Article  Google Scholar 

  • Garzón, C., Geiser, D., & Moorman, G. (2005). Diagnosis and population analysis of Pythium species using AFLP fingerprinting. Plant Disease, 89, 81–89. https://doi.org/10.1094/PD-89-0081.

    Article  PubMed  Google Scholar 

  • Guan, C.-F., Chen, W.-X., Mo, R.-L., Du, X.-Y., Zhang, Q.-L., & Luo, Z.-R. (2016). Isolation and characterization of DkPK genes associated with natural Deastringency in C-PCNA persimmon. Frontiers in Plant Science, 112, 1–11. https://doi.org/10.3389/fpls.2016.00156.

    Article  Google Scholar 

  • Hemelrijck, W., Debode, J., Heungens, K., Maes, M., & Creemers, P. (2010). Phenotypic and genetic characterization of Colletotrichum isolates from Belgian strawberry fields. Plant Pathology, 59, 853–861. https://doi.org/10.1111/j.1365-3059.2010.02324.x.

    Article  Google Scholar 

  • Hori, S. (1910). Kaki no Shinbyogai Tansobyo. Engei no Tomo, 6, 21–24.

    Google Scholar 

  • Ito, S. (1911). Gloeosporiose of the Japanese persimmon. The Botanical Magazine (Tokyo), 25, 197–202.

    Article  Google Scholar 

  • Ivors, K., Garbelotto, M., Vries, I., Ruyterspira, C., Hekkert, B., Rosenzweig, N., & Bonants, P. (2010). Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Molecular Ecology, 6, 1493–1505. https://doi.org/10.1111/j.1365-294X.2006.02864.x.

    Article  CAS  Google Scholar 

  • Jyufuku, S., Furuya, N., Goto, T., Tsuchiya, K., & Yoshimura, A. (2009). Pathogenic and genetic diversity in Asian strains of Xanthomonas oryzae pv. oryzae. Journal of the Faculty of Agriculture Kyushu University, 54(1), 19–23. https://doi.org/10.1017/S0021859608008150.

    Article  CAS  Google Scholar 

  • Kim, K., Yoon, J., Park, H., Park, E., & Kim, Y. (2004). Structural modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology, 94, 1295–1304. https://doi.org/10.1094/PHYTO.2004.94.12.1295.

    Article  PubMed  Google Scholar 

  • Kono, A., Nakaune, R., Yamada, M., Nakano, M., Mitani, N., & Ueno, T. (2009). Effect of culture conditions on conidia formation by Elsinoë ampelina, the causal organism of grapevine anthracnose. Plant Disease, 93(5), 481–484. https://doi.org/10.1094/pdis-93-5-0481.

    Article  PubMed  Google Scholar 

  • Kwon, J.-H., & Park, C.-S. (2004). Dissemination of conidiospores of Colletotrichum gloeosporiodes, the anthracnose of persimmon and the disease development. Research Plant Disease, 10, 272–278. https://doi.org/10.5423/RPD.2004.10.4.272.

    Article  Google Scholar 

  • Lee, S.-H., & Moorman, G. (2008). Identification and characterization of simple sequence repeat markers for Pythium aphanidermatum, P. cryptoirregulare, and P. irregulare and the potential use in Pythium population genetics. Current Genetics, 53, 81–93. https://doi.org/10.1007/s00294-007-0167-5.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K.-Q., & Mu, H.-F. (1988). Studies on persimmon anthracnose (Gloeosporium kaki hori). Journal of Shandong Agricultural University, 19, 69–71.

    CAS  Google Scholar 

  • Macdonald, B. (2004). Population genetics of plant pathogens. Plant Health Instructor.

  • Maffei, L. (1921). Una malattia delle foglie del “Kaki” dovuta al Colletotrichum kaki n. sp. Rivista di Patologia Vegetale, 11, 116–118.

    Google Scholar 

  • Mahuku, G., & Riascus, J. (2004). Virulence and molecular diversity within Colletotrichum lindemuthianum isolates from Andean and Mesoamerican bean varieties and regions. European Journal of Plant Pathology, 110, 253–263. https://doi.org/10.1023/B:EJPP.0000019795.18984.74.

    Article  CAS  Google Scholar 

  • Matsumoto, C., Kageyama, K., Suga, H., & Hyakumachi, M. (2000). Intraspecific DNA polymorphisms of Pythium irregulare. Mycological Research, 104, 1333–1341. https://doi.org/10.1017/S0953756200002744.

    Article  CAS  Google Scholar 

  • Middleton, J. (1943). The taxonomy, host range and geographic distribution of the genus Pythium. Memoirs of the Torrey Botanical Club, 20, 1–171.

    Google Scholar 

  • Min, T., Yin, X.-R., Shi, Y.-N., Luo, Z.-R., Yao, Y.-C., Donald, G., Ian, F., & Chen, K.-S. (2012). Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency. Journal of Experimental Botany, 18, 6393–6405. https://doi.org/10.1093/jxb/ers296.

    Article  CAS  Google Scholar 

  • Mo, R.-L., Yang, S.-C., Huang, Y.-M., Chen, W.-X., Zhang, Q.-L., & Luo, Z.-R. (2016). ADH and PDC genes involved in tannins coagulation leading to natural de-astringency in Chinese pollination constant and non-astringency persimmon (Diospyros kaki Thunb.). Tree Genetics & Genomes, 2, 1–11. https://doi.org/10.1007/s11295-016-0976-0.

    Article  Google Scholar 

  • Nei, M., & Li, W. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 10, 5269–5273.

    Article  Google Scholar 

  • Peres, N.-A., Mackenzie, S.-J., Peever, T.-L., & Timmer, L.-W. (2008). Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum. Phytopathology, 98(3), 345–352. https://doi.org/10.1094/PHYTO-98-3-0345.

    Article  CAS  PubMed  Google Scholar 

  • Sawada, K. (1933). Report of survey on fungi in Taiwan. Report of Agriculture Ministry of Taiwan Center Institute, 61, 1–99.

    Google Scholar 

  • Shi, X. Q., Li, B. Q., Qin, G. Z., & Tian, S. P. (2011). Antifungal activity and possible mode of action of borate against Colletotrichum gloeosporioides on mango. Plant Disease, 95(1), 63–69. https://doi.org/10.1094/pdis-06-10-0437.

    Article  CAS  PubMed  Google Scholar 

  • Tautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 10, 4127–4138.

    Article  Google Scholar 

  • Weir, B., & Johnston, P. (2010). Characterisation and neotypification of Gloeosporium kaki Hori as Colletotrichum horii nom. nov. Mycotaxon, 111, 209–219. https://doi.org/10.5248/111.209.

    Article  Google Scholar 

  • Wharton, P., & Diéguez-Uribeondo, J. (2004). The biology of Colletotrichum acutatum. Anales del Jardín Botánico de Madrid, 61, 3–22. https://doi.org/10.3989/ajbm.2004.v61.i1.61.

    Article  Google Scholar 

  • Xie, L., Zhang, J.-Z., Cai, L., & Hyde, K. (2010). Biology of Colletotrichum horii, the causal agent of persimmon anthracnose. Mycology, 1(4), 242–253.

    Article  CAS  Google Scholar 

  • Yamada, M. (2004). Persimmon genetic resources and breeding in Japan. Acta Horticulture, 685, 55–64. https://doi.org/10.17660/ActaHortic.2005.685.5.

    Article  Google Scholar 

  • Yonemori, K., Honsho, C., Kanzaki, S., Ino, H., Ikegami, A., Kitajima, A., Sugiura, A., & Parfitt, D. (2008). Sequence analyses of the ITS regions and the mat K gene for determining phylogenetic relationships of Diospyros kaki (persimmon) with other wild Diospyros (Ebenaceae) species. Tree Genetics & Genomes, 4, 149–158. https://doi.org/10.1007/s11295-007-0096-y.

    Article  Google Scholar 

  • Zhimo, V. Y., Dilip, D., Sten, J., Ravat, V. K., Bhutia, D. D., Panja, B., et al. (2017). Antagonistic yeasts for biocontrol of the banana postharvest anthracnose pathogen Colletotrichum musae. Journal of Phytopathology, 165(1), 35–43. https://doi.org/10.1111/jph.12533.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Special Fund for Agroscientific Research in the Public Interest (201203047) and the Scientific Innovation Fund for Graduate of Central South University of Forestry and Technology (20181003).

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/FFYplm

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-an Li.

Ethics declarations

Ethical statement

The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Qe., Ding, Xy., Li, Ja. et al. Morphological characteristics and genetic diversity of Colletotrichum horii infecting persimmon tree in China. Eur J Plant Pathol 156, 437–449 (2020). https://doi.org/10.1007/s10658-019-01893-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01893-x

Keywords

Navigation