Skip to main content
Log in

Identification and characterization of simple sequence repeat markers for Pythium aphanidermatum, P. cryptoirregulare, and P. irregulare and the potential use in Pythium population genetics

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Six simple sequence repeat (SSR)-enriched genome libraries from Pythium aphanidermatum, P. irregulare, and P. cryptoirregulare were constructed to develop SSR markers. One hundred six SSR primer pairs for P. aphanidermatum, 73 for P. cryptoirregulare, and 82 for P. irregulare were initially identified. After examining primers, the most polymorphic and reproducible SSR markers were selected for each Pythium species; 14 in P. aphanidermatum, 21 in P. irregulare, and 22 in P. cryptoirregulare. Analysis of isolates from each Pythium species using SSR markers showed the high degree of gene diversity and polymorphic information content (PIC) value in the three species. The average number of alleles was 3.5–5.3 in the three Pythium species. Seven SSR loci from P. cryptoirregulare and P. irregualre showed the distinct genetic separations of P. irregualre complex isolates. SSR markers identified for the three Pythium target species were highly transferable to other closely related Pythium species. Cross-amplification was found in all SSR markers between P. cryptoirregulare and P. irregulare. SSR loci were successfully amplified by direct PCR from mycelia of P. aphanidermatum, P. cryptoirregulare, and P. irregulare. These newly developed SSR markers can be used for population genetic studies and monitoring the movement of isolates in crop production systems or in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barr DJS, Warwick SI, Desaulniers NL (1997) Isozyme variation, morphology and growth response to temperature in Pythium irregulare. Can J Bot 75:2073–2081

    Article  CAS  Google Scholar 

  • Barr DJS, Warwick SI, Desaulniers NL (1998) Isozyme variation in heterothallic species and related asexual isolates of Pythium. Can J Bot 75:1927–1935

    Google Scholar 

  • Castelo A, Martins W, Gao G (2002) TROLL—Tandem Repeat Ocurrence Locator. Bioinform J 18:634–636

    Article  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Dick MW (1990) Phylum Oomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett Pub., Boston

  • Dobrowolski MP, Tommerup IC, Blakeman HD, O’Brien PA (2002) Non-Mendelian inheritance revealed in a genetic analysis of sexual progeny of Phytophthora cinnamomi with microsatellite markers. Fungal Genet Biol 35:197–212

    Article  PubMed  CAS  Google Scholar 

  • Garzón CD (2004) Molecular characterization of selected Pythium species. Ph.D. dissertation. The Pennsylvania State University, University Park, pp 1–96

  • Garzón CD, Geiser DM, Moorman GW (2005a) Amplified fragment length polymorphism analysis and internal transcribed spacer and coxII sequences reveal a species boundary within Pythium irregulare. Phytopathology 95:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Garzón CD, Geiser DM, Moorman GW (2005b) Diagnosis and population analysis of Pythium species using AFLP fingerprinting. Plant Dis 89:81–89

    Article  Google Scholar 

  • Garzón CD, Yánez JM, Moorman GW (2007) Pythium cryptoirregulare, a new species within the P. irregulare complex. Mycologia 99:291–301

    PubMed  Google Scholar 

  • Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Meth Enzymol 395:202–222

    Article  PubMed  CAS  Google Scholar 

  • Gobbin D, Pertot I, Gessler C (2003) Identification of microsatellite markers for Plasmopara viticola and establishment of high throughput method for SSR analysis. Eur J Plant Pathol 109(2):153–164

    Article  CAS  Google Scholar 

  • Herrero ML, Klemsdal SS (1998) Identification of Pythium aphanidermatum using the RAPD technique. Mycol Res 102:136–140

    Article  CAS  Google Scholar 

  • Ivors K, Garbelotto M, Vries IDE, Ruyter-Spira C, Hekkert BTE, Rosenzweig N, Bonants P (2006) Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol Ecol 15(6):1493–1505

    Article  PubMed  CAS  Google Scholar 

  • Jany JL, Bousquet J, Gagne A, Khasa DP (2006) Simple sequence repeat (SSR) markers in the ectomycorrhizal fungus Laccaria bicolor for environmental monitoring of introduced strains and molecular ecology applications. Mycol Res 110:51–59

    Article  PubMed  CAS  Google Scholar 

  • Karaoglu H, Lee CMY, Meyer W (2005) Survey of simple sequence repeats in completed fungal genomes. Mol Biol Evol 22(3):639–649

    Article  PubMed  CAS  Google Scholar 

  • Knapova G, Gisi U (2002) Phenotypic and genotypic structure of Phytophthora infestans populations on potato and tomato in France and Switzerland. Plant Pathol 51:641–653

    Article  Google Scholar 

  • Lees AK, Wattier R, Shaw DS, Sullivan L, Williams NA, Cooke DEL (2006) Novel microsatellite markers for the analysis of Phytophthora infestans populations. Plant Pathol 55:311–319

    Article  CAS  Google Scholar 

  • Lévesque CA, De Cock AWAM (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res 108:1363–1383

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Martin FN, Kistler HC (1990) Species specific banding patterns of restriction endonuclease digested mitochondrial DNA in the genus Pythium. Exp Mycol 14:32–46

    Article  CAS  Google Scholar 

  • Martins W, de Sousa D, Proite K, Guimarães P, Moretzsohn M, Bertioli DJ (2006) New softwares for automated microsatellite marker development. Nucleic Acids Res 34:E31

    Article  PubMed  Google Scholar 

  • Matsumoto C, Kagayama K, Suga H, Hyakumachi M (1999) Phylogenetic relationships of Pythium species based on ITS and 5.8S sequences of ribosomal DNA. Mycoscience 40:321–331

    Article  CAS  Google Scholar 

  • Matsumoto C, Kageyama K, Suga H, Hyakumachi M (2000) Intraspecific DNA polymorphisms of Pythium irregulare. Mycological Res 104:1333–1341

    Article  CAS  Google Scholar 

  • Middleton JT (1943) The taxonomy, host range and geographic distribution of the genus Pythium. Memoirs Torrey Bot Club 20:1–171

    Google Scholar 

  • Moorman GW, Kang S, Geiser DM, Kim SH (2002) Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania. Plant Dis 86:1227–1231

    Article  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Orti G, Pearse DE, Avise J (1997) Phylogenetic assessment of length variation at a microsatellite locus. Proc Natl Acad Sci USA 94:10745–10749

    Article  PubMed  CAS  Google Scholar 

  • Plaats-Niterink AJvd (1981) Monograph of the genus Pythium. Stud Mycol 21:1–242

    Google Scholar 

  • Prospero S, Black JA, Winton LM (2004) Isolation and characterization of microsatellite markers in Phytophthora ramorum, the causal agent of sudden oak death. Mol Ecol Notes 4(4):672–674

    Article  CAS  Google Scholar 

  • Prospero S, Hansen EM, Grunwald NJ, Winton LM (2007) Population dynamics of the sudden oak death pathogen Phytophthora ramorum in Oregon from 2001 to 2004. Mol Ecol 16:2958–2973

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Humana Press, Totowa, NJ

    Google Scholar 

  • Stallings RL, Ford AF, Nelson D, Torney DC, Hildebrand CE, Moyzis RK (1991) Evolution and distribution of (GT)n repetitive sequences in Mammalian genomes. Genomic 10:807–815

    Article  CAS  Google Scholar 

  • Wang D, Shi J, Carlson SR, Cregan PB, Ward RW, Diers BW (2003) A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Sci 43:1828–1832

    Article  CAS  Google Scholar 

  • Waterhouse GM (1967) Key to Pythium Pringsheim. Mycol Pap 109:1–15

    Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

Download references

Acknowledgments

This work was supported by the USDA-ARS Floriculture and Nursery Crops Research Initiative and The Pennsylvania State University Agricultural Experiment Station. We thank Rachel Leonard for her technical assistance throughout the study. We also thank Dr. Seogchan Kang, Dr. Maria Jimenez-Gasco, and Dr. Carla Garzón for their technical review and comments, and Dr. Seonghwan Kim for Pythium collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Moorman.

Additional information

Communicated by D. Ebbole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Moorman, G.W. Identification and characterization of simple sequence repeat markers for Pythium aphanidermatum, P. cryptoirregulare, and P. irregulare and the potential use in Pythium population genetics. Curr Genet 53, 81–93 (2008). https://doi.org/10.1007/s00294-007-0167-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0167-5

Keywords

Navigation