Skip to main content
Log in

Venturia inaequalis trapped: molecular quantification of airborne inoculum using volumetric and rotating arm samplers

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Site-specific high throughput monitoring of airborne ascospores of Venturia inaequalis, the causal agent of apple scab, can improve existing warning systems. A new qPCR assay was developed to quantify ascospores collected by a simple rotating-arm spore sampler. The qPCR assay was highly specific and sensitive, with a limit of quantification of 20 ascospores per sample. The new detection system was compared to sampling with a traditional Burkard volumetric spore trap and to microscopic quantification. During controlled ascospore release experiments in a closed environment, strong correlations (ρ: 0.96 to 0.99) were observed between the two types of samplers and the two methods of quantification but significantly larger numbers of spores (log difference: 0.43 to 0.69) were obtained when using the rotating-arm sampler and when using molecular quantification. During comparisons under outdoor conditions over a three-year period, reasonable correlations between the techniques (average ρ = 0.61) were observed. When rotating-arm samplers operate continuously they can get saturated but their counts still correlated better with those from the Burkard sampler than when they only operate during rain and until two hours after. This suggests that ascospores were also captured outside of rain events. Based on these comparisons, molecular quantification of spores captured with the rotating-arm sampler appears to be a sensitive and reliable method to determine airborne ascospores of V. inaequalis and holds promise as a tool to guide targeted fungicide applications in commercial orchards as well as to increase our knowledge of the aerobiology of this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrios, G. N. (2005). Plant Pathology 5th Edition. Elsevier (5th ed.). Elsevier Academic Press. doi:https://doi.org/10.1016/j.plantsci.2005.02.019

  • Ahmed, N., Englund, J. E., Åhman, I., Lieberg, M., & Johansson, E. (2011). Perception of pesticide use by farmers and neighbors in two periurban areas. Science of the Total Environment, 412–413, 77–86. https://doi.org/10.1016/j.scitotenv.2011.10.022.

    Article  CAS  Google Scholar 

  • Avermaete, T., Keulemans, W., Claes, W., De Tavernier, J., Geeraerd, A., Govers, G., Honnay, O., Maertens, M., Mathijs, E., Matthys, C., Relaes, J., Segers, Y., Van Malcot, W., & Vanpaemel, G. (2017). Wat met Ons Voedsel? LannooCampus.

  • Aylor, D. E. (1993). Relative collection efficiency of Rotorod and Burkard spore samplers for airborne Venturia inaequalis ascospores. The American Phytopathological Society, 83(10), 1116–1119.

    Article  Google Scholar 

  • Billones-Baaijens, R., Ramón, J., Ramón’urbez-Torres, R., Ayres, M., & Sosnowski, M. (2018). Molecular methods to detect and quantify Botryosphaeriaceae inocula associated with grapevine dieback in Australia, 102(8), 1489–1499. doi:https://doi.org/10.1094/PDIS-11-17-1854-RE.

    Article  CAS  PubMed  Google Scholar 

  • Bowen, J. K., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K. M., & Templeton, M. D. (2011). Venturia inaequalis: The causal agent of apple scab. Molecular Plant Pathology, 12(2), 105–122. https://doi.org/10.1111/j.1364-3703.2010.00656.x.

    Article  PubMed  Google Scholar 

  • Cao, X., Yao, D., Zhou, Y., West, J. S., Xu, X., Luo, Y., Ding, K., Fan, J., & Duan, X. (2016). Detection and quantification of airborne inoculum of Blumeria graminis f. sp. tritici using quantitative PCR. European Journal of Plant Pathology, 146(1), 225–229.

    Article  CAS  Google Scholar 

  • Carisse, O., McCartney, H. A., Gagnon, J. A., & Brodeur, L. (2005). Quantification of airborne inoculum as an aid in the management of leaf blight of onion caused by Botrytis squamosa. The American Phytopathological Society, 89(7), 726–733. https://doi.org/10.1094/PD-89-0726.

    Article  CAS  Google Scholar 

  • Carisse, Odile, Tremblay, D.-M., Jobin, T., & Walker, A. S. (2010). Disease decision support systems: Their impact on disease management and durability of fungicide effectiveness. In Fungicides (pp. 177–200). InTech. doi:https://doi.org/10.5772/13335

    Google Scholar 

  • Chandelier, A., Helson, M., Dvorak, M., & Gischer, F. (2014). Detection and quantification of airborne inoculum of Hymenoscyphus pseudoalbidus using real-time PCR assays. Plant Pathology, 63(6), 1296–1305. https://doi.org/10.1111/ppa.12218.

    Article  CAS  Google Scholar 

  • Crisp, H. C., Gomez, R. A., White, K. M., & Quinn, J. M. (2013). A side-by-side comparison of Rotorod and Burkard pollen and spore collections. Annals of Allergy, Asthma & Immunology, 111(2), 118–125. https://doi.org/10.1016/J.ANAI.2013.05.021.

    Article  Google Scholar 

  • Daniëls, B., De Landtsheer, A., Dreesen, R., Davey, M. W., & Keulemans, J. (2012). Real-time PCR as a promising tool to monitor growth of Venturia spp . In scab-susceptible and -resistant apple leaves. European Journal of Plant Pathology, 134, 821–833. https://doi.org/10.1007/s10658-012-0058-6.

    Article  CAS  Google Scholar 

  • De Backer, M. (2012). Characterization and detection of Puccinia horiana on chrysanthemum for resistance breeding and sustainable control. Phd thesis, Ghent University, Belgium.

  • Frenz, D. A. (1999). Comparing pollen and spore counts collected with the Rotorod sampler and Burkard spore trap. Annals of Allergy, Asthma & Immunology, 83, 341–349.

    Article  CAS  Google Scholar 

  • Frenz, D. A. (2000). The effect of windspeed on pollen and spore counts collected with the Rotorod sampler and Burkard spore trap. Annals of Allergy, Asthma & Immunology, 85(5), 392–394. https://doi.org/10.1016/S1081-1206(10)62553-7.

    Article  CAS  Google Scholar 

  • Gadoury, D. M., & MacHardy, W. E. (1982). Preparation and interpretation of squash mounts od pseudotheciia of Venturia inaequalis. Phytopathology, 72(1), 92–95.

    Article  Google Scholar 

  • Gadoury, D. M., Stensvand, A., & Seem, R. C. (1998). Influence of light, relative humidity, and maturity of populations on discharge of ascospores of Venturia inaequalis. Phytopathology, 88(9), 902–909. https://doi.org/10.1094/PHYTO.1998.88.9.902.

    Article  CAS  PubMed  Google Scholar 

  • Giraud, T., Gladieux, P., & Gavrilets, S. (2010). Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology & Evolution, 25, 387–395. https://doi.org/10.1016/j.tree.2010.03.006.

    Article  Google Scholar 

  • Gusberti, M., Patocchi, A., Gessler, C., & Broggini, G. A. L. (2012). Quantification of Venturia inaequalis growth in Malus x Domestica with quantitative real-time polymerase chain reaction, (December), 1791–1797.

  • Heffer, M. J., Ratz, J. D., Miller, D. J., & Day, J. H. (2005). Comparison of the Rotorod to other air samplers for the determination of Ambrosia artemisiifolia pollen concentrations conducted in the environmental exposure unit. Aerobiologia, 21(3–4), 233–239. https://doi.org/10.1007/s10453-005-9007-6.

    Article  Google Scholar 

  • Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6, 986–994.

    Article  CAS  PubMed  Google Scholar 

  • Holb, I. J. (2008). Timing of first and final sprays against apple scab combined with leaf removal and pruning in organic apple production. Crop Protection, 27, 814–822. https://doi.org/10.1016/j.cropro.2007.11.009.

    Article  Google Scholar 

  • Irdi, G. A., Jones, J. R., & White, C. M. (2002). Pollen and fungal spore sampling and analysis. Statistical evaluations. Grana, 41(1), 44–47. https://doi.org/10.1080/00173130260045495.

    Article  Google Scholar 

  • Klosterman, S. J., Anchieta, A., McRoberts, N., Koike, S. T., Subbarao, K. V., Voglmayr, H., Choi, Y.-J., Thines, M., & Martin, F. N. (2014). Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii). The American Phytopathological Society, 104(12), 1349–1359. https://doi.org/10.1094/PHYTO-02-14-0054-R.

    Article  CAS  Google Scholar 

  • Lacey, M. E., & West, J. S. (2006). The Air Spora. Springer. doi:https://doi.org/10.1007/s13398-014-0173-7.2

  • Latorre, F., Romero, E. J., & Mancini, M. V. (2008). Comparative study of different methods for capturing airborne pollen, and effects of vegetation and meteorological variables. Aerobiologia, 24, 107–120. https://doi.org/10.1007/s10453-008-9090-6.

    Article  Google Scholar 

  • MacHardy, William E. (1996). Apple scab : biology, epidemiology, and management. APS Press. https://my.apsnet.org/ItemDetail?iProductCode=42066.

  • MacHardy, W. E., & Gadoury, D. M. (1986). Patterns of ascospore discharge by Venturia inaequalis. The American Phytopathological Society, 76(10), 985–990.

    Article  Google Scholar 

  • MacHardy, W. E., & Gadoury, D. M. (1989). A revision of Mill’s criteria for predicting apple scab infection periods. Phytopathology, 79(3), 304–310.

    Article  Google Scholar 

  • Meitz-Hopkins, J. C., von Diest, S. G., Koopman, T. A., Bahramisharif, A., & Lennox, C. L. (2014). A method to monitor airborne Venturia inaequalis ascospores using volumetric spore traps and quantitative PCR. European Journal of Plant Pathology, 140(3), 527–541.

    Article  Google Scholar 

  • Mills, W. D. (1944). Efficient use of sulfur dusts and sprays during rain to control apple scab. New York State College of Agriculture Cornell Ext. Bul., 630, 4.

    Google Scholar 

  • Mills, W., & Laplante, A. (1954). Diseases and insects in the orchard. Cornell University Ext. Bull., 711, 21–27.

    Google Scholar 

  • Rosenberger, D. (2016). RIMpro as a Tool for Management of Apple Scab. https://blogs.cornell.edu/plantpathhvl/files/2016/01/RIMpro-as-a-Tool-for-Scab-Mgmt-15hf9bc.pdf.

  • Rossi, V., Ponti, I., Marinelli, M., Giosuè, S., & Bugiani, R. (2001). Environmental factors influencing the dispersal of Venturia inaequalis ascospores in the orchard air. Journal of Phytopathology, 149(1), 11–19.

    Article  Google Scholar 

  • San-Blas, G., & Calderone, R. A. (2008). Pathogenic Fungi: Insights in Molecular Biology. Caister Academic Press.

  • Stensvand, A., Amundsen, T., Semb, L., Gadoury, D. M., & Seem, R. C. (1998). Discharge and dissemination of ascospores by Venturia inaequalis during dew. Plant Disease, 82(7), 761–764.

    Article  PubMed  Google Scholar 

  • Sutton, T. B., & Jones, A. L. (1976). Evaluation of four spore traps for monitoring discharge of ascospores of Venturia inaequalis. Phytopathology, 66(4), 453–456.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tormo-molina, R., Rodriguez, A. M., & Palacios, I. S. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst sporetraps. Earobiologia, 12(December), 161–166. https://doi.org/10.1007/BF02447407.

    Article  Google Scholar 

  • Turenne, C. Y., Sanche, S. E., Hoban, D. J., Karlowsky, J. A., & Kabani, A. M. (1999). Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. Journal of Clinical Microbiology, 37(6), 1846–1851. https://doi.org/10.1080/13693780310001600435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Poucke, K., Franceschini, S., Webber, J. F., Vercauteren, A., Turner, J. A., McCracken, A. R., Heungens, K., & Brasier, C. M. (2012). Discovery of a fourth evolutionary lineage of Phytophthora ramorum: EU2. Fungal Biology, 116(11), 1178–1191. https://doi.org/10.1016/j.funbio.2012.09.003.

    Article  PubMed  Google Scholar 

  • Whelan, J. A., Russell, N. B., & Whelan, M. A. (2003). A method for the absolute quantification of cDNA using real-time PCR. Journal of Immunological Methods, 278(1–2), 261–969.

    Article  CAS  PubMed  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phyologenetics. In PCR Protocols: A Guide to Methods and Applications (pp. 315–322).

Download references

Acknowledgements

This research was funded by Flanders Innovation & Entrepreneurship (VLAIO) with co-funding from industry and growers. The authors thank Valerie Caffier for providing the isolate of Venturia asperata and Amelie Grammen for providing isolates of Colletotrichum acutatum, Neofabraea sp. and Nigrospora sp. We also thank Fran Focquet and Thomas Goedefroit for their technical help and Miriam Levenson for English language editing.

Funding

This study was funded by grant “LA Traject 135078” from Flanders Innovation & Entrepreneurship (VLAIO), which includes co-funding from industry and growers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Heungens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torfs, S., Van Poucke, K., Van Campenhout, J. et al. Venturia inaequalis trapped: molecular quantification of airborne inoculum using volumetric and rotating arm samplers. Eur J Plant Pathol 155, 1319–1332 (2019). https://doi.org/10.1007/s10658-019-01858-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01858-0

Keywords

Navigation