Skip to main content
Log in

A comparative proteomic analysis of the PVY-induced hypersensitive response in leaves of potato (Solanum tuberosum L.) plants that differ in Ny-1 gene dosage

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The Ny-1 gene confers hypersensitive response (HR) to Potato virus Y (PVY) in potato cultivars (Solanum tuberosum L.). Tetraploid potato breeding clone PB07–37 possessing the allele Ny-1 in a duplex state was developed. After PVY infection, the size of necrotic lesions in leaves of PB07–37 was reduced by approximately 68% in relation to cultivar Rywal plants displaying Ny-1 in a simplex dosage. Two-dimensional gel electrophoresis (2-DE) was applied for screening PVY-induced proteins in leaves of PB07–37. Compared with non-infected control plants, 60 reproducible PVY-induced proteins were detected using LC-MS/MS analysis, of which 41 were involved in qualitative changes and 19 were differently expressed in inoculated leaves by at least 1.5-fold. Proteins involved in the category of photosynthesis and primary metabolism were the most abundant. The results from PB07–37 (Ny-1 duplex) were compared with data from Rywal (Ny-1 simplex). The protein profiles in the Ny-1 simplex and Ny-1 duplex plants are genotype specific. Only eight proteins were identified in both genotypes. Five of them: ATP synthase CF1 alpha chain, chloroplastic; ATP synthase CF1 beta subunit, chloroplastic; ATP synthase subunit beta, mitochondrial-like; linoleate 13S-lipoxygenase 2–1, chloroplastic; and mitochondrial monodehydroascorbate reductase 5 are known to be involved in the defense response in plants. In our study, however, protein abundance did not correspond to the Ny-1 resistance gene dosage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander, M. M., & Cilia, M. (2016). A molecular tug-of-war: Global plant proteome changes during viral infection. Current Plant Biology, 5, 13–24.

    Article  Google Scholar 

  • Bengtsson, T., Weighill, D., Proux-Wéra, E., Levander, F., Resjö, S., Burra, D. D., Moushib, L. I., Hedley, P. E., Liljeroth, E., Jacobson, D., Alexandersson, E., & Andreasson, E. (2014). Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics, 15, 315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blée, E. (2002). Impact of phyto-oxylipins in plant defense. Trends in Plant Science, 7, 315–321.

    Article  PubMed  Google Scholar 

  • Chai, Q., Shang, X., Wu, S., Zhu, G., Cheng, C., Cai, C., Wang, X., & Guo, W. (2017). 5-Aminolevulinic acid dehydratase gene dosage affects programmed cell death and immunity. Plant Physiology, 175, 511–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chivasa, S., Murphy, A. M., Hamilton, J. M., Lindsey, K., Carr, J. P., & Slabas, A. R. (2009). Extracellular ATP is a regulator of pathogen defence in plants. The Plant Journal, 60, 436–448.

    Article  PubMed  Google Scholar 

  • Collmer, C. W., Marston, M. F., Taylor, J. C., & Jahn, M. (2000). The I gene of bean: A dosage-dependent allele conferring extreme resistance, hypersensitive resistance, or spreading vascular necrosis in response to the potyvirus Bean common mosaic virus. Molecular Plant-Microbe Interactions, 13, 1266–1270.

    Article  CAS  PubMed  Google Scholar 

  • Croft, K. P. C., Voisey, C. R., & Slusarenko, A. J. (1990). Mechanism of hypersensitive cell collapse: Correlation of increased lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris (L.) inoculated with an avirulant race of Pseudomonas syringae pv. phaseolicola. Physiological and Molecular Plant Pathology, 36, 49–62.

    Article  CAS  Google Scholar 

  • Flis, B., Hennig, J., Strzelczyk-Żyta, D., Gebhardt, C., & Marczewski, W. (2005). The Ry-f sto gene from Solanum stoloniferum for extreme resistant to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Molecular Breeding, 15, 95–101.

    Article  CAS  Google Scholar 

  • Gebhardt, C., & Valkonen, J. P. T. (2001). Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 39, 79–102.

    Article  CAS  PubMed  Google Scholar 

  • Hackett, C. A., Bradshaw, J. E., Meyer, R. C., McNicol, J. W., Milbourne, D., & Waugh, R. (1998). Linkage analysis in tetraploid species: A simulation study. Genetics Research, 71, 143–154.

    Article  CAS  Google Scholar 

  • Hatsugai, N., Koldenkova, V. P., Imamura, H., Noji, H., & Nagai, T. (2012). Changes in cytosolic ATP levels and intracellular morphology during bacteria-induced hypersensitive cell death as revealed by real-time fluorescence microscopy imaging. Plant and Cell Physiology, 53, 1768–1775.

    Article  CAS  PubMed  Google Scholar 

  • Henkes, S., Sonnewald, U., Badur, R., Flachmann, R., & Stitt, M. (2001). A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell, 13, 535–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, L., Bai, J., Guan, D., Sun, K., Jiao, Q., & Feng, H. (2016). Extracellular ATP: A potential molecule regulating the defence response of plants to biotic stresses – A review. Plant Protection Science, 52, 221–228.

    Article  CAS  Google Scholar 

  • Kangasjärvi, S., Neukermans, J., Li, S., Aro, E.-M., & Noctor, G. (2012). Photosynthesis, photorespiration, and light signalling in defence responses. Journal of Experimental Botany, 63, 1619–1636.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Chen, P., Shi, A., Shakiba, E., Gergerich, R., & Chen, Y. (2009). Temperature affects expression of symptoms induced by soybean mosaic virus in homozygous and heterozygous plants. Journal of Heredity, 100, 348–354.

    Article  CAS  PubMed  Google Scholar 

  • Raffaele, S., Leger, A., & Roby, D. (2009). Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signaling &. Behavior, 4, 94–99.

    Article  CAS  Google Scholar 

  • Ramakers, C., Ruijter, J. M., Lekanne Deprez, R. H., & Moorman, A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339, 62–66.

    Article  CAS  PubMed  Google Scholar 

  • Rance, I., Fournier, J., & Esquerré-Tugayé, M.-T. (1998). The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proceedings of the National Academy of Sciences of USA, 95, 6554–6559.

    Article  CAS  Google Scholar 

  • Ribeiro, A. M., Pinto, C. A. B. P., Andrade, C. M., dos Santos, J. B., & Figueira, A. R. A. (2006). SCAR marker for the selection of Ry-duplex potato clones immune to potato virus Y. Crop Breeding and Applied Biotechnology, 6, 1–8.

    Article  CAS  Google Scholar 

  • Rühle, T., & Leister, D. (2015). Assembly of F1F0-ATP synthases Biochimica et Biophysica. Acta, 1847, 849–860.

    Google Scholar 

  • Sagredo, B. D., Mathias, M. R., Barrientos, C. P., Acuña, I. B., Kalazich, J. B., & Santos, J. R. (2009). Evaluation of a SCAR RYSC3 marker of the Ry adg gene to select resistant genotypes to Potato virus Y (PVY) in the INIA potato breeding program. Chilean Journal of Agricultural Research, 69, 305–315.

    Article  Google Scholar 

  • Scholthof, K. B., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954.

    Article  CAS  PubMed  Google Scholar 

  • Scranton, M. A., Yee, A., Park, S.-Y., & Walling, L. L. (2012). Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. The Journal of Biological Chemistry, 287, 18408–18417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon-Blackburn, R. M., & Bradshaw, J. E. (2007). Resistance to Potato virus Y in a multitrait potato breeding scheme without direct selection in each generation. Potato Research, 50, 87–95.

    Article  Google Scholar 

  • Szajko, K., Chrzanowska, M., Witek, K., Strzelczyk-Żyta, D., Zagórska, H., Gebhardt, C., Hennig, J., & Marczewski, W. (2008). The novel gene Ny-1 on potato chromosome IX confers hypersensitive resistance to Potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance. Theoretical and Applied Genetics, 116, 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Szajko, K., Strzelczyk-Żyta, D., & Marczewski, W. (2018). Comparison of leaf proteomes of potato (Solanum tuberosum L.) genotypes with ER- and HR-mediated resistance to PVY infection. European Journal of Plant Pathology, 150, 375–385.

    Article  CAS  Google Scholar 

  • Szarzynska, B., Sobkowiak, L., Pant, B. D., Balazadeh, S., Scheible, W. R., Mueller-Roeber, B., Jarmolowski, A., & Szweykowska-Kulinska, Z. (2009). Gene structures and processing of Arabidopsis thaliana HYL1-dependent primiRNAs. Nucleic Acids Research, 37, 3083–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umate, P. (2011). Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice. Plant Signaling &. Behavior, 6, 335–338.

    Article  CAS  Google Scholar 

  • Valkonen, J. P. T. (2015). Elucidation of virus-host interactions to enhance resistance breeding for control of virus diseases in potato. Breeding Science, 65, 69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel, H., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Review Genetics, 13, 227–232.

    Article  CAS  Google Scholar 

  • Zhao, J., Zhang, X., Hong, Y., & Liu, Y. (2016). Chloroplast in plant-virus interaction. Frontiers in Microbiology, 7, 1565.

    PubMed  PubMed Central  Google Scholar 

  • Zheng, C., Chen, P., & Gergerich, R. (2005). Effect of temperature on the expression of necrosis in soybean infected with Soybean mosaic virus. Crop Science, 45, 916–922.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by The National Science Centre in Poland, grant UMO-2014/13/B/NZ9/02468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Marczewski.

Ethics declarations

Conflict of interest

No conflict of interest.

Human and/or animals rights

Not applied.

Informed consent

Not applied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szajko, K., Sołtys-Kalina, D., Szarzynska, B. et al. A comparative proteomic analysis of the PVY-induced hypersensitive response in leaves of potato (Solanum tuberosum L.) plants that differ in Ny-1 gene dosage. Eur J Plant Pathol 153, 385–396 (2019). https://doi.org/10.1007/s10658-018-1565-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1565-x

Keywords

Navigation