Skip to main content
Log in

Evaluation of the temporal distribution of Fusarium graminearum airborne inoculum above the wheat canopy and its relationship with Fusarium head blight and DON concentration

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

With the aim of unravelling the role of airborne Fusarium graminearum inoculum in the epidemic of Fusarium head blight (FHB) caused by this species in wheat spikes, a network of Burkard air samplers was set up in five wheat fields distributed in Belgium from 2011 to 2013. Each year from April to July, the daily amounts of F. graminearum inoculum above the wheat canopy were quantified using a newly developed TaqMan qPCR assay. The pattern of spore trapping observed was drastically different per year and per location with a frequency of detection between 9 and 66% and a mean daily concentration between 0.8 and 10.2 conidia-equivalent/m3. In one location, air was sampled for a whole year. Inoculum was frequently detected from the wheat stem elongation stage until the end of the harvesting period, but high inoculum levels were also observed during the fall. Using a window-pane analysis, different periods of time around wheat flowering (varying in length and starting date) were investigated for their importance in the relation between airborne inoculum and FHB parameters (FHB severity, frequency of F. graminearum infection and DON). For almost all the combinations of variables, strong and significant correlations were found for multiple window lengths and starting times. Inoculum quantities trapped around flowering were highly correlated with F. graminearum infection (up to R = 0.84) and DON (up to R = 0.9). Frequencies of detection were also well correlated with both of these parameters. DON concentrations at harvest could even be significantly associated with the F. graminearum inoculum trapped during periods finishing before the beginning of the anthesis (R = 0.77). Overall, these results highlight the key role of the airborne inoculum in F. graminearum epidemics and underline the importance of monitoring it for the development of disease forecasting tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almquist, C., & Wallenhammar, A.-C. (2015). Monitoring of plant and airborne inoculum of Sclerotinia sclerotiorum in spring oilseed rape using real-time PCR. Plant Pathology, 64(1), 109–118.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Booth, C. (1971). The Genus Fusarium (p. 237). Kew: Commonwealth Mycologiscal Institute.

    Google Scholar 

  • Chandelier, A., Nimal, C., André, F., Planchon, V., & Oger, R. (2011). Fusarium species and DON contamination associated with head blight in winter wheat over a 7-year period (2003–2009) in Belgium. European Journal of Plant Pathology, 130(3), 403–414.

    Article  Google Scholar 

  • Chandelier, A., Helson, M., Dvorak, M., & Gischer, F. (2014). Detection and quantification of airborne inoculum of Hymenoscyphus pseudoalbidus using real-time PCR assays. Plant Pathology, 63(6), 1296–1305.

    Article  CAS  Google Scholar 

  • Cowger, C., Patton-Özkurt, J., Brown-Guedira, G., & Perugini, L. (2009). Post-anthesis moisture increased fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology, 99(4), 320–327.

    Article  PubMed  CAS  Google Scholar 

  • David, R. F., Bozorgmagham, A., Schmale, D. G., Ross, S. D., & Marr, L. C. (2016). Identification of meteorological predictors of fusarium graminearum ascospore release using correlation and causality analyses. European Journal of Plant Pathology, 145(2), 483–492.

    Article  Google Scholar 

  • De Wolf, E. D., Madden, L. V., & Lipps, P. E. (2003). Risk assessment models for wheat fusarium head blight epidemics based on within-season weather data. Phytopathology, 93(4), 428–435.

    Article  PubMed  Google Scholar 

  • Del Ponte, E. M., Fernandes, J. M. C., & Pierobom, C. R. (2005). Factors affecting density of airborne Gibberella zeae inoculum. Fitopatologia Brasileira, 30(1), 55–60.

    Article  Google Scholar 

  • Del Ponte, E. P., Fernandes, J. M. C., & Bergstrom, G. C. (2007). Influence of growth stage on fusarium head blight and deoxynivalenol production in wheat. Journal of Phytopathology, 155(10), 577–581.

    Article  CAS  Google Scholar 

  • Desjardins, A. E. (2006). Fusarium mycotoxins: chemistry, genetics and biology. St Paul: APS Press.

    Google Scholar 

  • Dill-Macky, R., & Jones, R. K. (2000). The effect of previous crop residues and tillage on fusarium head blight of wheat. Plant Disease, 84(1), 71–76.

    Article  Google Scholar 

  • Duvivier, M., Dedeurwaerder, G., Proft, M., Moreau, J.-M., & Legrève, A. (2013). Real-time PCR quantification and spatio-temporal distribution of airborne inoculum of Mycosphaerella graminicola in Belgium. European Journal of Plant Pathology, 137(2), 325–341.

    Article  Google Scholar 

  • Duvivier, M., Dedeurwaerder, G., Bataille, C., De Proft, M., & Legrève, A. (2016). Real-time PCR quantification and spatio-temporal distribution of airborne inoculum of Puccinia triticina in Belgium. European Journal of Plant Pathology, 145(2), 405–420.

    Article  CAS  Google Scholar 

  • Fernando, W. G., Miller, J. D., Seaman, W. L., Seifert, K., & Paulitz, T. C. (2000). Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Canadian Journal of Botany, 78(4), 497–505.

    Article  Google Scholar 

  • Hellin, P., Dedeurwaerder, G., Duvivier, M., Scauflaire, J., Huybrechts, B., Callebaut, A., et al. (2016). Relationship between Fusarium spp. diversity and mycotoxin contents of mature grains in southern Belgium. Food Additives and Contaminants Part A, 33(7), 1228–1240.

    Article  CAS  Google Scholar 

  • Hofgaard, I. S., Seehusen, T., Aamot, H. U., Riley, H., Razzaghian, J., Le, V. H., et al. (2016). Inoculum potential of Fusarium spp. relates to tillage and straw management in Norwegian fields of spring oats. Frontiers in Microbiology, 7, 556.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hörberg, H. M. (2002). Patterns of splash dispersed conidia of Fusarium poae and Fusarium culmorum. European Journal of Plant Pathology, 108(1), 73–80.

    Article  Google Scholar 

  • Inch, S., Fernando, W. G. D., & Gilbert, J. (2005). Seasonal and daily variation in the airborne concentration of Gibberella zeae (Schw.) Petch spores in Manitoba. Canadian Journal of Plant Pathology, 27(3), 357–363.

    Article  Google Scholar 

  • Jackson, S. L., & Bayliss, K. L. (2011). Spore traps need improvement to fulfil plant biosecurity requirements. Plant Pathology., 60(5), 801–810.

    Article  Google Scholar 

  • Keller, M. D., Waxman, K. D., Bergstrom, G. C., & Schmale III, D. G. (2010). Local distance of wheat spike infection by released clones of Gibberella zeae disseminated from infested corn residue. Plant Disease, 94(9), 1151–1155.

    Article  Google Scholar 

  • Keller, M. D., Bergstrom, G. C., & Shields, E. J. (2014). The aerobiology of Fusarium graminearum. Aerobiologia, 30(2), 123–136.

    Article  Google Scholar 

  • Kriss, A. B., Paul, P. A., & Madden, L. V. (2010). Relationship between yearly fluctuations in fusarium head blight intensity and environmental variables: A window-pane analysis. Phytopathology, 100(8), 784–797.

    Article  PubMed  CAS  Google Scholar 

  • Kriss, A. B., Paul, P. A., Xu, X., Nicholson, P., Doohan, F. M., Hornok, L., et al. (2012). Quantification of the relationship between the environment and fusarium head blight, Fusarium pathogen density, and mycotoxins in winter wheat in Europe. European Journal of Plant Pathology, 133(4), 975–993.

    Article  CAS  Google Scholar 

  • Landschoot, S., Audenaert, K., Waegeman, W., Pycke, B., Bekaert, B., De Baets, B., et al. (2011). Connection between primary fusarium inoculum on gramineous weeds, crop residues and soil samples and the final population on wheat ears in Flanders, Belgium. Crop Protection, 30(10), 1297–1305.

    Article  Google Scholar 

  • Leplat, J., Friberg, H., Abid, M., & Steinberg, C. (2012). Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agronomy for Sustainable Development, 33(1), 97–111.

    Article  Google Scholar 

  • Luchi, N., Ghelardini, L., Belbahri, L., Quartier, M., & Santini, A. (2013). Rapid detection of Ceratocystis platani inoculum by quantitative real-time PCR assay. Applied and Environemental Microbiology, 79(17), 5394–5404.

    Article  CAS  Google Scholar 

  • de Luna, L., Paulitz, T. C., Bujold, I., & Carisse, O. (2002). Ascospore gradients of Gibberella zeae from overwintered inoculum in wheat fields. Canadian Journal of Plant Pathology, 24(4), 457–464.

    Article  Google Scholar 

  • Maldonado-Ramirez, S. L., Schmale, D. G., III, Shields, E. J., & Bergstrom, G. C. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of fusarium head blight. Agricultural and Forest Meteorology, 132(1–2), 20–27.

  • Manstretta, V., Gourdain, E., & Rossi, V. (2015). Deposition patterns of Fusarium graminearum ascospores and conidia within a wheat canopy. European Journal of Plant Pathology, 143(4), 873–880.

    Article  Google Scholar 

  • Markell, S. G., & Francl, L. J. (2003). Fusarium head blight inoculum: Species prevalence and Gibberella zeae spore type. Plant Disease, 87(7), 814–820.

    Article  Google Scholar 

  • Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W., et al. (1998). Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology, 53(1), 17–37.

    Article  CAS  Google Scholar 

  • Nicolau, M., Fernandes, J. M. C., Nicolau, M., & Fernandes, J. M. C. (2012). A predictive model for daily inoculum levels of Gibberella zeae in Passo Fundo, Brazil. International Journal of Agronomy. https://doi.org/10.1155/2012/795162.

  • Osborne, L. E., & Stein, J. M. (2007). Epidemiology of fusarium head blight on small-grain cereals. International Journal of Food Microbiology, 119(1–2), 103–108.

    Article  PubMed  Google Scholar 

  • Paul, P. A., El-Allaf, S. M., Lipps, P. E., & Madden, L. V. (2004). Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology, 94(12), 1342–1349.

    Article  PubMed  CAS  Google Scholar 

  • Paul, P. A., Lipps, P. E., De Wolf, E., Shaner, G., Buechley, G., Adhikari, T., et al. (2007). A distributed lag analysis of the relationship between Gibberella zeae inoculum density on wheat spikes and weather variables. Phytopathology, 97(12), 1608–1624.

    Article  PubMed  CAS  Google Scholar 

  • Paul, P. A., Lipps, P. E., Hershman, D. E., McMullen, M. P., Draper, M. A., & Madden, L. V. (2008). Efficacy of triazole-based fungicides for fusarium head blight and deoxynivalenol control in wheat: A multivariate meta-analysis. Phytopathology, 98(9), 999–1011.

    Article  PubMed  CAS  Google Scholar 

  • Pereyra, S. A., Dill-Macky, R., & Sims, A. L. (2004). Survival and inoculum production of Gibberella zeae in wheat residue. Plant Disease, 88(7), 724–730.

    Article  Google Scholar 

  • Pietravalle, S., Shaw, M. W., Parker, S. R., & van den Bosch, F. (2003). Modeling of relationships between weather and Septoria tritici epidemics on winter wheat: A critical approach. Phytopathology, 93(10), 1329–1339.

    Article  PubMed  CAS  Google Scholar 

  • Prandini, A., Sigolo, S., Filippi, L., Battilani, P., & Piva, G. (2009). Review of predictive models for fusarium head blight and related mycotoxin contamination in wheat. Food and Chemical Toxicology, 47(5), 927–931.

    Article  PubMed  CAS  Google Scholar 

  • Prussin, A. J., Ross, S. D., & Schmale, D. G. (2014a). Monitoring the long distance transport of fusarium graminearum from field-scale sources of inoculum. Plant Disease, 98(4), 504–511.

    Article  CAS  Google Scholar 

  • Prussin, A. J., Szanyi, N. A., Welling, P. I., Ross, S. D., & Schmale, D. G. (2014b). Estimating the production and release of ascospores from a field-scale source of fusarium graminearum inoculum. Plant Disease, 98(4), 497–503.

    Article  Google Scholar 

  • Ramirez, M. L., Chulze, S., & Magan, N. (2006). Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. International Journal of Food Microbiology, 106(3), 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S. L., Atkins, S. D., & West, J. S. (2009). Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR. Plant Pathology, 58(2), 324–331.

    Article  CAS  Google Scholar 

  • Rossi, V., Languasco, L., Pattori, E., & Giosuè, S. (2002). Dynamics of airborne Fusarium macroconidia in wheat fields naturally affected by head blight. Journal of Plant Pathology, 84(1), 53–64.

    Google Scholar 

  • Schaafsma, A. W., Tamburic-Ilincic, L., & Hooker, D. C. (2005). Effect of previous crop, tillage, field size, adjacent crop, and sampling direction on airborne propagules of Gibberella zeae/Fusarium graminearum, fusarium head blight severity, and deoxynivalenol accumulation in winter wheat. Canadian Journal of Plant Pathology, 27(2), 217–224.

    Article  CAS  Google Scholar 

  • Schmale, D. G., III, Shah, D. A., & Bergstrom, G. C. (2005). Spatial patterns of viable spore deposition of Gibberella zeae in wheat fields. Phytopathology, 95(5), 472–479.

  • Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73(3), 751–754.

    Article  Google Scholar 

  • Stein, J. M., & Osborne, L. E. (2006). A relationship between the number of Gibberella zeae propagules present during heading and deoxynivalenol (DON) content in wheat grain. Phytopathology, 96(Suppl), S110.

  • Stein, J. M., Osborne, L. E., Bondalapati, K. D., Glover, K. D., & Nelson, C. A. (2009). Fusarium head blight severity and deoxynivalenol concentration in wheat in response to Gibberella zeae inoculum concentration. Phytopathology, 99(6), 759–764.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4(2), 195–209.

    Article  Google Scholar 

  • Trail, F., Gaffoor, I., & Vogel, S. (2005). Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology, 42(6), 528–533.

    Article  PubMed  Google Scholar 

  • Waalwijk, C., Kastelein, P., de Vries, I., Kerényi, Z., van der Lee, T., Hesselink, T., et al. (2003). Major changes in Fusarium spp. in wheat in the Netherlands. European Journal of Plant Pathology, 109(7), 743–754.

    Article  CAS  Google Scholar 

  • Waalwijk, C., van der Heide, R., de Vries, I., van der Lee, T., Schoen, C., Costrel-de Corainville, G., et al. (2004). Quantitative detection of fusarium species in wheat using TaqMan. European Journal of Plant Pathology, 110(5–6), 481–494.

    Article  CAS  Google Scholar 

  • West, J. S., & Kimber, R. B. E. (2015). Innovations in air sampling to detect plant pathogens. Annals of Applied Biology, 166(1), 4–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • West, J. S., Atkins, S. D., Emberlin, J., & Fitt, B. D. L. (2008). PCR to predict risk of airborne disease. Trends in Microbiology, 16(8), 380–387.

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek, T. M., Jørgensen, L. N., Hansen, A. L., Munk, L., & Justesen, A. F. (2014). Early detection of sugar beet pathogen Ramularia beticola in leaf and air samples using qPCR. European Journal of Plant Pathology, 138(4), 775–785.

    Article  CAS  Google Scholar 

  • Xu, X. (2003). Effects of environmental conditions on the development of Fusarium ear blight. European Journal of Plant Pathology, 109(4), 683–689.

    Article  Google Scholar 

  • Xu, X., Parry, D. W., Nicholson, P., Thomsett, M. A., Simpson, D., Edwards, S. G., et al. (2005). Predominance and association of pathogenic fungi causing fusarium ear blight in wheat in four European countries. European Journal of Plant Pathology, 112(2), 143–154.

    Article  Google Scholar 

  • Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida, M., & Nakajima, T. (2010). Deoxynivalenol and nivalenol accumulation in wheat infected with Fusarium graminearum during grain development. Phytopathology, 100(8), 763–773.

    Article  PubMed  CAS  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Service Public de Wallonie, Direction générale opérationnelle Agriculture, Ressources naturelles et Environnement. The authors wish to thank Gérald Marchal, Frédéric Mathieu, Marie-Eve Renard, Viviane Van Hese, Hanne Verhaegen and Charlotte Liénard for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Duvivier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and ensure that accepted principles of ethical and professional conduct have been followed. This research does not involve human participants nor animals.

Electronic supplementary material

ESM 1

(XLSX 10 kb)

ESM 2

(XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellin, P., Duvivier, M., Dedeurwaerder, G. et al. Evaluation of the temporal distribution of Fusarium graminearum airborne inoculum above the wheat canopy and its relationship with Fusarium head blight and DON concentration. Eur J Plant Pathol 151, 1049–1064 (2018). https://doi.org/10.1007/s10658-018-1442-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1442-7

Keywords

Navigation