Skip to main content
Log in

The aerobiology of Fusarium graminearum

  • Review Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Current knowledge of the aerobiology of Fusarium graminearum sensu lato is based on decades of published research documenting the processes of spore discharge, atmospheric transport, and deposition in this important pathogen of cereal crops worldwide. Spores from both local and more distant sources have been shown to cause infection in susceptible cereal crops when environmental conditions are favorable. Susceptible crops may be exposed throughout a growing season to airborne spores deposited in rain events and in night-time hours through gravitational settling. Given that spores deposited on cereal florets originate from distant as well as local sources, disease risk forecasts, based currently on weather favoring local spore production during the days before peak infection (i.e., initiation of crop flowering), might be improved by placing greater emphasis on local weather directly favoring infection at and following the time of flowering. Also, considering the genetic diversity of fungal spores introduced to local agricultural fields following atmospheric transport, crop breeders should select resistant varieties based on screening against a set of fungal isolates that represent the range of virulence observed in fungal populations across a broader geographic region. An increased understanding of the aerobiology of F. graminearum contributes to the overall knowledge of plant pathogen transport in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, A. L. (1948). The development of Gibberella zeae head blight of wheat. Phytopathology, 38, 599–611.

    Google Scholar 

  • Atanasoff, D. (1920). Fusarium blight (scab) of wheat and other cereals. Journal of Agricultural Research, 20, 1–41.

    Google Scholar 

  • Ayers, J. E., Pennypacker, S. P., Nelson, P. E., Pennypacker, B. W. (1975). Environmental factors associated with airborne ascospores of Gibberella zeae in corn and wheat fields. Phytopathology, 65, 835 (Abstr.).

    Google Scholar 

  • Aylor, D. E. (1975). Deposition of particles in a plant canopy. Journal of Applied Meteorology, 14, 52–57.

    Article  Google Scholar 

  • Aylor, D. E. (1986). A framework for examining inter-regional aerial transport of fungal spores. Agricultural and Forest Meteorology, 38, 263–288.

    Article  Google Scholar 

  • Aylor, D. E. (1990). The role of intermittent wind in the dispersal of fungal pathogens. Annual review of Phytopathology, 28, 73–92.

    Article  Google Scholar 

  • Aylor, D. E. (1998). The aerobiology of apple scab. Plant Disease, 82, 838–849.

    Article  Google Scholar 

  • Aylor, D. (1999). Biophysical scaling and the passive dispersal of fungus spores: relationship to integrated pest management strategies. Agricultural and Forest Meteorology, 97, 275–292.

    Article  Google Scholar 

  • Aylor, D. E., & Taylor, G. S. (1983). Escape of Peronospora tabacina spores from a field of diseased tobacco plants. Phytopathology, 73, 525–529.

    Article  Google Scholar 

  • Aylor, D. E., Wang, Y., & Miller, D. R. (1993). Intermittent wind close to the ground within a grass canopy. Boundary-Layer Meteorology, 66, 427–448.

    Article  Google Scholar 

  • Bai, G., & Shaner, G. (1994). Scab of wheat: Prospects for control. Plant Disease, 78, 760–766.

    Article  Google Scholar 

  • Bai, G.-H., & Shaner, G. (1996). Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Disease, 80, 975–979.

    Article  Google Scholar 

  • Bai, G., & Shaner, G. (2004). Management and resistance in wheat and barley to Fusarium head blight. Annual review of Phytopathology, 42, 135–161.

    Article  CAS  Google Scholar 

  • Baird, R. E., Mullinix, B. G., Peery, A. B., & Lang, M. L. (1997). Diversity and longevity of the soybean residue mycobiota in a no-tillage system. Plant Disease, 81, 530–534.

    Article  Google Scholar 

  • Bergstrom, G.C., Cummings, J.A., Waxman, K.D., Bradley, C.A., Hazelrigg, A.L., Hershman, D.E., Nagelkirk, M., Sweets, L.E., Wegulo, S.N. (2012). Effects of local corn debris management on FHB and DON levels in fourteen U.S. wheat environments in 2011 and 2012. In Proceedings of the 2012 National Fusarium Head Blight Forum (pp. 5–6). Orlando, FL.

  • Bergstrom, G. C., Waxman, K. D. (2008). Microplots in commercial wheat fields for quantifying the local contribution of Gibberella zeae from natural corn debris to Fusarium head blight and deoxynivalenol accumulation. In Proceedings of the 2008 National Fusarium Head Blight Forum (pp. 6–8). Indianapolis, IN.

  • Bergstrom, G. C., Waxman, K. D., Schmale, D. G., III, Bradley, C. A., Sweets, L. E., Wegulo, S. N., Keller, M. D. (2010). Effects of within-field corn debris in microplots on FHB and DON in eleven U.S. wheat environments in 2010. In Proceedings of the 2010 National Fusarium Head Blight Forum (pp. 69–70). Milwaukee, WI.

  • Beyer, M., & Verreet, J. A. (2005). Germination of Gibberella zeae ascospores as affected by age of spores after discharge and environmental factors. European Journal of Plant Pathology, 111, 381–389.

    Article  Google Scholar 

  • Beyer, M., Verreet, J. A., & Ragab, W. S. M. (2005). Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production. International Journal of Food Microbiology, 98, 233–240.

    Article  CAS  Google Scholar 

  • Booth, C. (1971). The genus Fusarium. Farnham Royal: Commonwealth Agricultural Bureaux for the Commonwealth Mycological Institute.

    Google Scholar 

  • Bushnell, W. R., Hazen, B. E., & Pritsch, C. (2003). Histology and physiology of Fusarium head blight. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 44–83). St. Paul, MN: APS Press.

    Google Scholar 

  • Caesar, A. J., & Pearson, R. C. (1983). Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. Phytopathology, 73, 1024–1030.

    Article  Google Scholar 

  • Cowger, C., Patton-Özkurt, J., Brown-Guedira, G., & Perugini, L. (2009). Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology, 99, 320–327.

    Article  CAS  Google Scholar 

  • Cowger, C., Sutton, A. L. (2005). The Southeastern U.S. Fusarium head blight epidemic of 2003. Plant Health Progress. doi:10.1094/PHP-2005-1026-01-RS.

  • Cox, C. S. (1987). The aerobiological pathway of microorganisms. Chichester: John Wiley & Sons.

    Google Scholar 

  • Cuomo, C. A., Güldener, U., Xu, J., Trail, F., Turgeon, B. G., Di Pietro, A., et al. (2007). The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 317, 1400–1402.

    Article  CAS  Google Scholar 

  • de Luna, L., Bujold, I., Carisse, O., & Paulitz, T. C. (2002). Ascospore gradients of Gibberella zeae from overwintered inoculum in wheat fields. Canadian Journal of Plant Pathology, 24, 457–464.

    Article  Google Scholar 

  • De Wolf, E. D., Madden, L. V., & Lipps, P. E. (2003). Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 93, 428–435.

    Article  Google Scholar 

  • Del Ponte, E. M., Fernandes, J. M. C., & Bergstrom, G. C. (2007). Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat. Journal of Phytopathology, 155, 577–581.

    Article  CAS  Google Scholar 

  • Del Ponte, E. M., Fernandes, J. M. C., & Pierobom, C. R. (2005). Factors affecting density of airborne Gibberella zeae inoculum. Fitopatologia Brasileira, 30, 55–60.

    Article  Google Scholar 

  • Del Ponte, E. M., Shah, D. A., & Bergstrom, G. C. (2003). Spatial patterns of Fusarium head blight in New York wheat fields suggest role of airborne inoculum. Plant Health Progress,. doi:10.1094/PHP-2003-0418-01-RS.

    Google Scholar 

  • DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E., Beyersdorf, A. J., et al. (2013). Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proceedings of the National Academy of Sciences, USA, 110, 2575–2580.

    Article  CAS  Google Scholar 

  • Dill-Macky, R. (2008). Cultural control practices for Fusarium head blight: problems and solutions. In Cereal research communications 3rd international FHB symposium. Szeged, Hungary.

  • Dill-Macky, R., & Jones, R. K. (2000). The effect of previous crop residue and tillage on Fusarium head blight of wheat. Plant Disease, 84, 71–76.

    Article  Google Scholar 

  • Dusabenyagasani, M., Dostaler, D., & Hamelin, R. C. (1999). Genetic diversity among Fusarium graminearum strains from Ontario and Quebec. Canadian Journal of Plant Pathology, 21, 308–314.

    Article  Google Scholar 

  • Fernando, W. G. D., Miller, J. D., Seaman, W. L., Seifert, K., & Paulitz, T. C. (2000). Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Canadian Journal of Botany, 78, 497–505.

    Article  Google Scholar 

  • Fernando, W. G. D., Paulitz, T. C., Seaman, W. L., Dutilleul, P., & Miller, J. D. (1997). Head blight gradients caused by Gibberella zeae from area sources of inoculum in wheat field plots. Phytopathology, 87, 414–421.

    Article  CAS  Google Scholar 

  • Ferrandino, F. J., & Aylor, D. E. (1987). Relative abundance and deposition gradients of clusters of urediniospores of Uromyces phaseoli. Phytopathology, 77, 107–111.

    Article  Google Scholar 

  • Francl, L., Shaner, G., Bergstrom, G., Gilbert, J., Pederson, W., Dill-Macky, R., et al. (1999). Daily inoculum levels of Gibberella zeae on wheat spikes. Plant Disease, 83, 662–666.

    Article  Google Scholar 

  • Gilbert, J., & Fernando, W. G. D. (2004). Epidemiology and biological control of Gibberella zeae/Fusarium graminearum. Canadian Journal of Plant Pathology, 26, 464–472.

    Article  Google Scholar 

  • Gilbert, J., & Tekauz, A. (2000). Review: recent developments in research on Fusarium head blight of wheat in Canada. Canadian Journal of Plant Pathology, 22, 1–8.

    Article  Google Scholar 

  • Gilbert, J., Woods, S. M., & Kromer, U. (2008). Germination of ascospores of Gibberella zeae after exposure to various levels of relative humidity and temperature. Phytopathology, 98, 504–508.

    Article  CAS  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.

    Article  CAS  Google Scholar 

  • Gregory, P. H. (1968). Interpreting plant disease dispersal gradients. Annual review of Phytopathology, 6, 189–212.

    Article  Google Scholar 

  • Gregory, P. H. (1973). The microbiology of the atmosphere. New York: John Wiley and Sons.

    Google Scholar 

  • Guenther, J. C., & Trail, F. (2005). The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia, 97, 229–237.

    Article  Google Scholar 

  • Hoffer, G. N., Johnson, A. G., & Atanasoff, D. (1918). Corn-rootrot and wheatscab. Journal of Agricultural Research, 13, 611–612.

    Google Scholar 

  • Horevaj, P., Gale, L. R., & Milus, E. A. (2011). Resistance in winter wheat lines to initial infection and spread within spikes by deoxynivalenol and nivalenol chemotypes of Fusarium graminearum. Plant Disease, 95, 31–37.

    Article  Google Scholar 

  • Inch, S., Fernando, D., & Gilbert, J. (2005). Seasonal and daily variation in the airborne concentration of Gibberella zeae (Schw.) Petch spores in Manitoba. Canadian Journal of Plant Pathology, 27, 357–363.

    Article  Google Scholar 

  • Ingold, C. T. (1967). Liberation mechanisms of fungi. In Airborne microbes: Seventeenth symposium of the society for general microbiology held at the Imperial College. London: Cambridge University Press.

  • Isard, S. A., & Gage, S. H. (2001). Flow of life in the atmosphere. East Lansing: Michigan State University Press.

    Google Scholar 

  • Johnson, A.G., Dickson, J. G. (1921). Wheat scab and its control. USDA Farmers Bulletin (1224).

  • Keller, M. D., & Shields, E. J. (2013). Aerobiological sampling efficiency of media-containing Petri plates for use in lower atmosphere spore collection. Aerobiologia,. doi:10.1007/s10453-013-9306-2.

    Google Scholar 

  • Keller, M. D., Thomason, W. E., & Schmale, D. G, I. I. I. (2011). The spread of a released clone of Gibberella zeae from different amounts of infested corn residue. Plant Disease, 95, 1458–1464.

    Article  Google Scholar 

  • Keller, M. D., Waxman, K. D., Bergstrom, G. C., & Schmale, D. G, I. I. I. (2010). Local distance of wheat spike infection by released clones of Gibberella zeae disseminated from infested corn residue. Plant Disease, 94, 1151–1155.

    Article  Google Scholar 

  • Khonga, E. B., & Sutton, J. C. (1988). Inoculum production and survival of Gibberella zeae in maize and wheat residue. Canadian Journal of Plant Pathology, 10, 232–239.

    Article  Google Scholar 

  • Levizzani, V., Georgiadis, T., & Isard, S. A. (1998). Meteorological aspects of the aerobiological pathway. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods of aerobiology. Bologna, Italy: Associazione italiana di aerobiologia.

    Google Scholar 

  • Maldonado-Ramirez, S. L. (2001). Aerobiology of the wheat scab fungus, Gibberella zeae: Discharge, atmospheric dispersal, and deposition of ascospores. Ph.D. dissertation. Ithaca: Cornell University.

  • Maldonado-Ramirez, S. L., Schmale, D. G, I. I. I., Shields, E. J., & Bergstrom, G. C. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology, 132, 20–27.

    Article  Google Scholar 

  • Markell, S. G., & Francl, L. J. (2003). Fusarium head blight inoculum: Species prevalence and Gibberella zeae spore type. Plant Disease, 87, 814–820.

    Article  Google Scholar 

  • Martinelli, J., Bocchese, C., Gale, L., Weiping, X., ODonnell, K., Kistler, H. (2001). Soybean is a host for Fusarium graminearum. In Proceedings of the 2001 National Fusarium Head Blight Forum (p. 136). Erlanger, KY.

  • McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, R., Shaner, G., et al. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 96, 1712–1728.

    Article  Google Scholar 

  • McMullen, M., Halley, S., Schatz, B., Meyer, S., Jordahl, J., Ransom, J. (2008). Integrated strategies for Fusarium head blight management in the United States. In Cereal research communications 3rd international FHB symposium. Szeged, Hungary.

  • McMullen, M. P., Jones, R., & Gallenberg, D. (1997). Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Disease, 81, 1340–1348.

    Article  Google Scholar 

  • McMullen, M. P., & Stack, R. W. (1983). Fusarium species associated with grassland soils. Canadian Journal of Botany, 61, 2530–2538.

    Article  Google Scholar 

  • Miller, J. D., Culley, J., Fraser, K., Hubbard, S., Meloche, F., Ouellet, T., et al. (1998). Effect of tillage practice on Fusarium head blight of wheat. Canadian Journal of Plant Pathology, 20, 95–103.

    Article  Google Scholar 

  • Mishra, P. K., Tewari, J. P., Turkington, T. K., & Clear, R. M. (2009). Genetic evidence for a recent geographic expansion of 15-acetyldeoxynivalenol chemotypes of Fusarium graminearum in Canada. Canadian Journal of Plant Pathology, 31, 468–474.

    Article  CAS  Google Scholar 

  • Munkvold, G. P. (2003). Epidemiology of Fusarium diseases and their mycotoxin in maize ears. European Journal of Plant Pathology, 109, 705–713.

    Article  CAS  Google Scholar 

  • Nita, M., De Wolf, E., Isard, S. (2007). Effects of solar radiation on the viability of Gibberella zeae ascospores. In Proceedings of the 2007 National Fusarium Head Blight Forum (p. 107). Kansas City, MO.

  • Nita, M., De Wolf, E., Madden, L., Paul, P., Shaner, G., Adhikari, T., Ali, S., Stein, J., Osborne, L. (2006). Effect of corn residue level on disease intensity of Fusarium head blight (FHB) and on deoxynivalenol (DON) concentration: A multi-state field study. Phytopathology, 96, S85. (Abstr.).

  • Oke, T. R. (1987). Boundary layer climates (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Osborne, L. E., & Stein, J. M. (2007). Epidemiology of Fusarium head blight on small-grain cereals. International Journal of Food Microbiology, 119, 103–108.

    Article  Google Scholar 

  • Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathology, 44, 207–238.

    Article  Google Scholar 

  • Paul, P. A., El-Allaf, S. M., Lipps, P. E., & Madden, L. V. (2004). Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology, 94, 1342–1349.

    Article  CAS  Google Scholar 

  • Paulitz, T. C. (1996). Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Disease, 80, 674–678.

    Article  Google Scholar 

  • Pedgley, D. E. (1985). Concepts in atmospheric science as they relate to the movement of biotic agents. In Mackenzie, Barfield, Kennedy, & Berger (Eds.) The movement and dispersal of agriculturally important biotic agents (pp. 175–178). Baton Rouge, Louisiana: Claitors Publishing Division.

  • Pereyra, S. A., & Dill-Macky, R. (2008). Colonization of the residue of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Disease, 92, 800–807.

    Article  Google Scholar 

  • Pereyra, S. A., Dill-Macky, R., & Sims, A. L. (2004). Survival and inoculum production of Gibberella zeae in wheat residue. Plant Disease, 88, 724–730.

    Article  Google Scholar 

  • Pestka, J. J. (2007). Deoxynivalenol: Toxicity, mechanisms, and animal health risks. Animal Feed Science and Technology, 137, 283–298.

    Article  CAS  Google Scholar 

  • Pestka, J. J. (2010). Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84, 663–679.

    Article  CAS  Google Scholar 

  • Pestka, J. J., & Smolinski, A. T. (2005). Deoxynivalenol: Toxicology and potential effects on humans. Journal of Toxicology & Environmental Health Part B: Critical Reviews, 8, 39–69.

    Article  CAS  Google Scholar 

  • Rabb, R. L. (1985). Conceptual bases to develop and use information on the movement and dispersal of biotic agents in agriculture. In Mackenzie, Barfield, Kennedy, & Berger (Eds.) The movement and dispersal of agriculturally important biotic agents (pp. 5–34). Baton Rouge, LA: Claitors Publishing Division.

  • Reis, E. M. (1990). Effect of rain and relative humidity on the release of ascospores and on the infection of wheat heads by Gibberella zeae. Fitopatologia Brasileira, 15, 339–343.

    Google Scholar 

  • Roelfs, A. P. (1985). Epidemiology in North America. In W. R. Bushnell & A. P. Roelfs (Eds.), The cereal rusts (Vol. II, pp. 403–434). London: Academic Press.

    Google Scholar 

  • Rossi, V., Languasco, E., Pattori, E., & Giosuè, S. (2002). Dynamics of airborne Fusarium macroconidia in wheat fields naturally affected by head blight. Journal of Plant Pathology, 84, 53–64.

    Google Scholar 

  • Schaafsma, A. W., Tamburic-Ilinic, L., & Hooker, D. C. (2005). Effect of previous crop, tillage, field size, adjacent crop, and sampling direction on airborne propagules of Gibberella zeae/Fusarium graminearum, fusarium head blight severity, and deoxynivalenol accumulation in winter wheat. Canadian Journal of Plant Pathology, 27, 217–224.

    Article  CAS  Google Scholar 

  • Schilling, A. G., Miedaner, T., & Geiger, H. H. (1997). Molecular variation and genetic structure in field populations of Fusarium species causing head blight in wheat. Cereal Research Communications, 25, 549–554.

    Google Scholar 

  • Schmale, D. G, I. I. I., Arnsten, Q. A., & Bergstrom, G. C. (2005a). The forcible discharge distance of ascospores of Gibberella zeae. Canadian Journal of Plant Pathology, 27, 376–382.

    Article  Google Scholar 

  • Schmale, D. G, I. I. I., & Bergstrom, G. C. (2004). Spore deposition of the ear rot pathogen, Gibberella zeae, inside corn canopies. Canadian Journal of Plant Pathology, 26, 591–595.

    Article  Google Scholar 

  • Schmale, D. G., III, Bergstrom, G. C. (2007). The aerobiology and population genetic structure of Gibberella zeae. Plant Health Progress. doi:10.1094/PHP-2007-0726-04-RV.

  • Schmale, D. G, I. I. I., Leslie, J. F., Zeller, K. A., Saleh, A. A., Shields, E. J., & Bergstrom, G. C. (2006a). Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology, 96, 1021–1026.

    Article  CAS  Google Scholar 

  • Schmale, D. G, I. I. I., Shah, D. A., & Bergstrom, G. C. (2005b). Spatial patterns of viable spore deposition of Gibberella zeae in wheat fields. Phytopathology, 95, 472–479.

    Article  Google Scholar 

  • Schmale, D. G, I. I. I., Shields, E. J., & Bergstrom, G. C. (2006b). Night-time spore deposition of the Fusarium head blight pathogen, Gibberella zeae, in rotational wheat fields. Canadian Journal of Plant Pathology, 28, 100–108.

    Article  Google Scholar 

  • Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–838.

    Google Scholar 

  • Shaner, G. (2003). Epidemiology of Fusarium head blight of small grain cereals in North America. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 84–119). St. Paul, MN: APS Press.

    Google Scholar 

  • Shields, D. E., & Testa, A. M. (1999). Fall migratory flight initiation of the potato leafhopper, Empoasca fabae (Homoptera: Cicadellidae): Observations in the lower atmosphere using remote piloted vehicles. Agricultural and Forest Meteorology, 97, 317–330.

    Article  Google Scholar 

  • Snijders, C. H. A. (1990). Fusarium head blight and mycotoxin contamination of wheat, a review. Netherlands Journal of Plant Pathology, 96, 187–198.

    Article  CAS  Google Scholar 

  • Snyder, W. C., & Nash, S. M. (1968). Relative incidence of Fusarium pathogens of cereals in rotation plots at Rothamsted. Transactions of the British Mycological Society, 51, 417–425.

    Article  Google Scholar 

  • Sparks, A. N., Westbrook, J. K., Wolf, W. W., Pair, S. D., Raulston, J. R. (1985). Atmospheric transport of biotic agents on a local scale. In Mackenzie, Barfield, Kennedy, and Berger (Eds.) The movement and dispersal of agriculturally important biotic agents (pp. 203–217). Baton Rouge, LA: Claitors Publishing Division.

  • Stack, R. (1989). A comparison of the inoculum potential of ascospores and conidia of Gibberella zeae. Canadian Journal of Plant Pathology, 11, 137–142.

    Article  Google Scholar 

  • Stack, R. W. (1997). Gradients of Fusarium head blight in wheat along transects away from a concentrated source of Gibberella zeae ascospore inoculum. In Proceedings of the National Fusarium Head Blight Forum. St. Paul, MN.

  • Stack, R. W. (1999). Return of an old problem: Fusarium head blight of small grains. Plant Health Progress,. doi:10.1094/PHP-2000-0622-01-RV.

    Google Scholar 

  • Stakman, E. C., & Harrar, J. G. (1957). Principles of plant pathology. New York: Ronald Press.

    Google Scholar 

  • Stakman, E. C., Henry, A. W., Curran, G. C., & Christopher, W. N. (1923). Spores in the upper air. Journal of Agricultural Research, 24, 599–606.

    Google Scholar 

  • Stein, J. M., Osborne, L. E., Bondalapati, K. D., Glover, K. D., & Nelson, C. A. (2009). Fusarium head blight severity and deoxynivalenol concentration in wheat in response to Gibberella zeae inoculum concentration. Phytopathology, 99, 759–764.

    Article  CAS  Google Scholar 

  • Sung, J.-M., & Cook, R. J. (1981). Effect of water potential on reproduction and spore germination by Fusarium roseum ‘Graminearum’, ‘Culmorum’, and ‘Avenaceum’. Phytopathology, 71, 499–504.

    Article  Google Scholar 

  • Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.

    Article  Google Scholar 

  • Tallapragada, P., Ross, S. D., & Schmale, D. G, I. I. I. (2011). Lagrangian coherent structures are associated with fluctuations in airborne microbial populations. Chaos, 21, 033122.

    Article  CAS  Google Scholar 

  • Teich, A. H., & Hamilton, J. R. (1985). Effect of cultural practices, soil phosphorus, potassium, and pH on the incidence of Fusarium head blight and deoxynivalenol levels in wheat. Applied and Environmental Microbiology, 49, 1429–1431.

    CAS  Google Scholar 

  • Teich, A. H., & Nelson, K. (1984). Survey of Fusarium head blight and possible effects of cultural practices in wheat fields in Lambton County in 1983. Canadian Plant Disease Survey, 64, 11–13.

    Google Scholar 

  • Tekauz, A., McCallum, B., & Gilbert, J. (2000). Review: Fusarium head blight of barley in western Canada. Canadian Journal of Plant Pathology, 22, 9–16.

    Article  Google Scholar 

  • Trail, F., & Common, R. (2000). Perithecial development by Gibberella zeae: A light microscopy study. Mycologia, 92, 130–138.

    Article  Google Scholar 

  • Trail, F., Gaffoor, I., & Vogel, S. (2005). Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology, 42, 528–533.

    Article  Google Scholar 

  • Trail, F., Xu, H., Loranger, R., & Gadoury, D. (2002). Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia, 94, 181–189.

    Article  Google Scholar 

  • Tschanz, A. T., Horst, R. K., & Nelson, P. E. (1975). Ecological aspects of ascospore discharge in Gibberella zeae. Phytopathology, 65, 597–599.

    Article  Google Scholar 

  • Tschanz, A. T., Horst, R. K., & Nelson, P. E. (1976). The effect of environment on sexual reproduction of Gibberella zeae. Mycologia, 68, 327–340.

    Article  Google Scholar 

  • US Food and Drug Administration guidance for industry and FDA: advisory levels for deoxynivalenol (DON) in finished wheat products for human consumption and grains and grain by-products used for animal feed. (2010). http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/NaturalToxins/ucm120184.htm.

  • Walker, S. L., Leath, S., Hagler, W. M, Jr, & Murphy, J. P. (2001). Variation among isolates of Fusarium graminearum associated with Fusarium head blight in North Carolina. Plant Disease, 85, 404–410.

    Article  Google Scholar 

  • Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K., Gaba, D., Patrick, S., et al. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45, 473–484.

    Article  Google Scholar 

  • Weise, M. V. (1987). Scab (head blight). In Compendium of wheat diseases 2nd edn. (pp. 16–18), St. Paul, MN: American Phytopathological Society.

  • Windels, C. E. (2000). Economic and social impacts of Fusarium head blight: Changing farms and rural communities in the northern Great Plains. Phytopathology, 90, 17–21.

    Article  CAS  Google Scholar 

  • Ye, H. Z. (1980). On the biology of the perfect stage of Fusarium graminearum Schw. Acta Phytophylacica Sinica, 7, 35–42.

    Google Scholar 

  • Yoshida, M., Kawada, N., & Nakajima, T. (2007). Effect of infection timing on Fusarium head blight and mycotoxin accumulation in open- and closed-flowering barley. Phytopathology, 97, 1054–1062.

    Article  Google Scholar 

  • Zeller, K. A., Bowden, R. L., & Leslie, J. F. (2003). Diversity of epidemic populations of Gibberella zeae from small quadrats in Kansas and North Dakota. Phytopathology, 93, 874–880.

    Article  Google Scholar 

  • Zeller, K. A., Bowden, R. L., & Lestlie, J. F. (2004). Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Molecular Ecology, 13, 563–571.

    Article  Google Scholar 

  • Zinkernagel, V., Adolf, B., & Haberneyer, J. (1997). The spread of Fusarium species from the above ground level to the ears of wheat. Cereal Research Communications, 25, 677–679.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elson J. Shields.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, M.D., Bergstrom, G.C. & Shields, E.J. The aerobiology of Fusarium graminearum . Aerobiologia 30, 123–136 (2014). https://doi.org/10.1007/s10453-013-9321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-013-9321-3

Keywords

Navigation