Skip to main content
Log in

Activity of foliar extracts of cultivated eggplants against sclerotinia lettuce drop disease and their phytochemical profiles

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Antifungal activity of plant-derived compounds can be exploited in disease management systems to improve sustainability and replace synthetic molecules. In this study, four crude hydroethanolic extracts of leaves, collected from Italian Solanum spp. landraces, were selected to evaluate their ability to suppress Sclerotinia minor Jagger, a great threat to lettuce production worldwide. In vitro fungal development was inhibited by Solanum melongena L. and S. aethiopicum L. extracts showing a dose-dependent correlation. At the highest concentration tested in the current experiments (45 mg mL−1) antifungal activity caused up to 90% growth reduction. The exposure of the fungus to S. aethiopicum extracts incited pronounced changes in the hyphal morphology as observed under light microscopy. Consistently, under laboratory conditions, in planta application of the active extracts on lettuce significantly reduced Sclerotinia drop disease in comparison to non-treated controls. Phytochemical composition was determined by liquid chromatography/mass spectrometry (LC/MS) analyses. Four secondary metabolites differentially present in the extracts, identified as n-caffeoylputrescine, chlorogenic acid, isoquercitrin and solasodoside A, are hypothesized to play a crucial role in mechanisms underlying biological effects of extracts. PCA analysis showed positive correlations of these compounds with the overall control ability of the extracts. The results indicated that foliar material from cultivated eggplant could be suitable to produce biological-based remedies for controlling plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Monaim, M. F., Abo-Elyousr, K. A. M., & Morsy, K. M. (2011). Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik). Crop Protection, 30, 185–191.

    Article  Google Scholar 

  • Ahmad, A., Shafique, S., & Shafique, S. (2013). Cytological and physiological basis for tomato varietal resistance against Alternaria alternata. Journal of the Science of Food and Agriculture, 93, 2315–2322.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Jones, A. D., & Howe, G. A. (2006). Constitutive activation of the jasmonate signalling pathway enhances the production of secondary metabolites in tomato. FEBS Letters, 580, 2540–2546.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Gao, X., Chen, Y., Qin, H., Huang, L., & Han, Q. (2014). Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed. Biological Control, 78, 67–76.

    Article  Google Scholar 

  • Cipollini, M. L., & Levey, D. J. (1997). Antifungal activity of Solanum fruit glycoalkaloids: implications for frugivory and seed dispersal. Ecology, 78, 799–809.

    Article  Google Scholar 

  • Cruz-Cruz, C. A., Ramírez-Tec, G., García-Sosa, K., Escalante-Erosa, F., Hill, L., Osbourn, A. E., & Peña-Rodríguez, L. M. (2010). Phytoanticipins from banana (Musa acuminate cv. Grande Naine) plants, with antifungal activity against Mycosphaerella fijiensis, the causal agent of black Sigatoka. European Journal of Plant Pathology, 126, 459–463.

    Article  CAS  Google Scholar 

  • da Cruz Cabral, L., Fernández Pinto, V., & Patriarca, A. (2013). Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166, 1–14.

    Article  PubMed  Google Scholar 

  • Das, J., Prasad Lahan, J., & Srivastava, R. B. (2010). Solanum melongena: a potential source of antifungal agent. Indian Journal of Microbiology, 50, 62–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Corato, U., Pane, C., Bruno, G. L., Cancellara, F. A., & Zaccardelli, M. (2015). Co-products from a biofuel production chain in crop disease management: a review. Crop Protection, 68, 12–26.

    Article  Google Scholar 

  • Delledonne, M., Dal Molin, A., Minio, A., Ferrarini, A., Tononi, P., Zamperin, G., Toppino, L., Sala, T., Barchi, L., Comino, C., Acquadro, A., Portis, E., Rinaldi, R., Scaglione, D., Francese, G., D’Alessandro, A., Mennella, G., Fantini, E., Pietrella, M., Sulli, M., Lanteri, S., Rotino, G. L., & Giuliano, G. (2014). A high quality eggplant (Solanum melongena L.) genome draft and its use for mapping metabolic QTLs. Proceedings of the 11th Solanaceae Conference, SOL 2014. November 2–6, 2014 Porto Seguro–Bahia, Brazil. pp 99

  • Dias, C., Domínguez-Pereles, R., Aires, A., Teixeira, A., Rosa, E., Barros, A., & Saavedra, M. J. (2015). Phytochemistry and activity against digestive pathogens of grape (Vitis vinifera L.) stem’s (poly)phenolic extracts. LWT–Food Science and Technology, 61, 25–32.

    CAS  Google Scholar 

  • Elsherbiny, E. A., Amin, B. H., & Baka, Z. A. (2016). Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biology and Technology, 111, 256–263.

    Article  Google Scholar 

  • Gahukar, R. T. (2012). Evaluation of plant-derived products against pests and diseases of medicinal plants: a review. Crop Protection, 42, 202–209.

    Article  CAS  Google Scholar 

  • Gatto, M. A., Ippolito, A., Linsalata, V., Cascarano, N. A., Nigro, F., Vanadia, S., & Di Venere, D. (2011). Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biology and Technology, 61, 72–82.

    Article  Google Scholar 

  • Hashem, M. (2011). Antifungal properties of crude extracts of five egyptian medicinal plants against dermatophytes and emerging fungi. Mycopathologia, 172, 37–46.

    Article  PubMed  Google Scholar 

  • Jasso de Rodríguez, D., Trejo-González, F. A., Rodríguez-García, R., Díaz-Jimenez, M. L. V., Sáenz-Galindo, A., Hernández-Castillo, F. D., Villareal-Quintanilla, J. A., & Peña-Ramos, F. M. (2015). Antifungal activity in vitro of Rhus muelleri against Fusarium oxysporum f. Sp. lycopersici. Industrial Crops and Products, 75, 150–158.

    Article  Google Scholar 

  • Jones, E. E., Mead, A., & Whipps, J. M. (2014). Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: control of sclerotinia disease in glasshouse lettuce. Plant Pathology, 53, 611–620.

    Article  Google Scholar 

  • Martins, N., Barros, L., Henriques, M., Silva, S., & Ferreira, I. C. F. R. (2015). Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products, 74, 648–670.

    Article  CAS  Google Scholar 

  • Mennella, G., Rotino, G. L., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., Cavallanti, F., Acciarri, N., & Lo Scalzo, R. (2010). Characterization of health-related compounds in eggplant (Solanum melongena L.,) lines derived from introgression of allied species. Journal of Agricultural and Food Chemistry, 58, 7597–7603.

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar, A., Eswaran, A., Nakkeeran, S., & Sangeetha, G. (2010). Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chili damping-off. Crop Protection, 29, 1483–1488.

    Article  Google Scholar 

  • Nguefack, J., Wulff, G. E., Lekagne Dongmo, J. B., Fouelefack, F. R., Fotio, D., Mbo, J., & Torp, J. (2013). Effect of plant extracts and an essential oil on the control of brown spot disease, tillering, number of panicles and yield increase in rice. European Journal of Plant Pathology, 137, 871–882.

    Article  Google Scholar 

  • Ono, M., Nishimura, K., Suzuki, K., Fukushima, T., Igoshi, K., Yoshimitsu, H., Ikeda, T., & Nohara, T. (2006). Steroidal glycosides from the underground parts of Solanum sodomaeum. Chemical and Pharmaceutical Bulletin, 54, 230–233.

    Article  CAS  PubMed  Google Scholar 

  • Pane, C., Villecco, D., Pentangelo, A., Lahoz, E., & Zaccardelli, M. (2012). Integration of soil solarisation with Brassica carinata seed meals amendment in a greenhouse lettuce production system. Acta Agriculturae Scandinavica-Section B, Soil Plant Science, 62, 291–299.

    Article  Google Scholar 

  • Pane, C., Villecco, D., Roscigno, G., De Falco, E., & Zaccardelli, M. (2013). Screening of plant derived antifungal substances useful for the control of seedborne pathogens. Archives of Phytopathology and Plant Protection, 46, 1533–1539.

    Article  CAS  Google Scholar 

  • Pane, C., Fratianni, F., Caputo, M., Parisi, M., Nazzaro, F., & Zaccardelli, M. (2015). Antifungal activity of wild Capsicum foliar extracts containing polyphenols against the phytopathogens Alternaria alternata, Rhizoctonia solani, Sclerotinia minor and Verticillium dahliae. In A. Mendez-Vilas (Ed.), Multidisciplinary approach for studying and combating microbial pathogens (pp. 34–38). Boca Raton: BrownWalker Press.

    Google Scholar 

  • Pane, C., Fratianni, F., Parisi, M., Nazzaro, F., & Zaccardelli, M. (2016). Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop Protection, 84, 81–87.

    Article  CAS  Google Scholar 

  • Plodpai, P., Chuenchitt, S., Petcharat, V., Chakthong, S., & Voravuthikunchai, S. P. (2013). Anti-Rhizoctonia solani activity by Desmos chinensis extracts and its mechanism of action. Crop Protection, 43, 65–71.

    Article  Google Scholar 

  • Pusztahelyi, T., Holb, I. J., & Pócsi, I. (2015). Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science, 6, 573. doi:10.3389/fpls.2015.00573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roddick, J. G., Rijnenberg, A. L., & Weissenberg, M. (1990). Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry, 29, 1513–1518.

    Article  CAS  Google Scholar 

  • Rosado-Álvarez, C., Molinero-Ruiz, L., Rodríguez-Arcos, R., & Basallote-Ureba, M. J. (2014). Antifungal activity of asparagus extracts against phytopathogenic Fusarium oxysporum. Scientia Horticulturae, 171, 51–57.

    Article  Google Scholar 

  • Ruelas, C., Tiznado-Hernández, M. E., Sánchez-Estrada, A., Robles-Burgueno, M. R., & Troncoso-Rojas, R. (2006). Changes in phenolic acid content during Alternaria alternate infection in tomato fruit. Journal Phytopathological, 154, 236–244.

    Article  CAS  Google Scholar 

  • SAS Institute (2007). JMP statistics and graphics guide. Cary: SAS Institute.

  • Sayago, J. E., Ordoñez, R. M., Negrillo Kovacevich, L., Torres, S., & Isla, M. I. (2012). Antifungal activity of extracts of extremophile plants from the argentine puma to control citrus postharvest pathogens and green mold. Postharvest Biology and Technology, 67, 19–24.

    Article  Google Scholar 

  • Schreiber, K. (1968). Steroid alkaloids: the Solanum group. In R. H. F. Manske (Ed.), The alkaloids–chemistry and physiology (Vol. X, pp. 1–192). New York: Academic Press.

    Google Scholar 

  • Smith, D. L., Garrison, M. C., Hollowell, J. E., Isleib, T. G., & Shew, B. B. (2008). Evaluation of application timing and efficacy of the fungicides fluazinam and boscalid for control of sclerotinia blight of peanut. Crop Protection, 27, 823–833.

    Article  CAS  Google Scholar 

  • Soylu, S., Yigitbas, H., Soylu, E. M., & Kurt, S. (2007). Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. Journal of Applied Microbiology, 103, 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  • Subbarao, K. V., Hubbard, J. C., & Schulbach, K. F. (1997). Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation. Phytopathology, 87, 877–883.

    Article  CAS  PubMed  Google Scholar 

  • Tian, J., Ban, X., Zeng, H., Huang, B., He, J., & Wang, Y. (2011). In vitro and in vivo activity of essential oil from dill (Anethum graveolens) against fungal spoilage of cherry tomatoes. Food Control, 22, 1992–1999.

    Article  CAS  Google Scholar 

  • Toppino, L., Vale’, G., & Rotino, G. L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22, 237–250.

    Article  CAS  Google Scholar 

  • Trigui, M., Hsouna, A. B., Hammami, I., Culioli, G., Ksantini, M., Tounsi, S., & Jaoua, S. (2013). Efficacy of Lawsonia inermis leaves extract and its phenolic compounds against olive knot and crown gall diseases. Crop Protection, 45, 83–88.

    Article  CAS  Google Scholar 

  • Uppal, A. K., El Hadrami, A., Adam, L. R., Tenuta, M., & Daayf, F. (2008). Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biological Control, 44, 90–100.

    Article  Google Scholar 

  • Walters, D. R. (2003). Polyamines and plant disease. Phytochemistry, 64, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Wang, J., Peng, X., Zhou, P., Bai, N., Meng, J., & Deng, X. (2014). Control efficacy against rice sheath blight of Platycladus orientalis extract and its antifungal active compounds. European Journal of Plant Pathology, 140, 515–525.

    Article  CAS  Google Scholar 

  • Wu, S.-B., Meyer, R. S., Whitaker, B. D., Litt, A., & Kennelly, E. J. (2013). A new liquid chromatography-mass spectrometry-based strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species. Journal of Chromatography A, 1314, 154–172.

    Article  CAS  PubMed  Google Scholar 

  • Yun, J. E., Lee, H., Ko, H. J., Woo, E. R., & Lee, D. G. (2015). Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochimica et Biophysica Acta, 1848, 695–701.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried-out within the Project: “Valorizzazione di produzioni ortive campane di eccellenza con strumenti di genomica avanzata (GenHort)”, funded by Italian Ministry of Education, University and Research - MIUR through the EU program P.O.N. Research and Competitiveness 2007-2013 (PON_02_00395_3215002). The authors thank dr. Rocco Sileo from ALSIA (Basilicata Region), for providing Rotonda’s eggplant samples, and Prof. Adelia Emilia de Almeida of the Universidade Estadual Paulista, São Paulo, Brazil, for the purified solamargine and solasonine supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catello Pane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pane, C., Francese, G., Raimo, F. et al. Activity of foliar extracts of cultivated eggplants against sclerotinia lettuce drop disease and their phytochemical profiles. Eur J Plant Pathol 148, 687–697 (2017). https://doi.org/10.1007/s10658-016-1126-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1126-0

Keywords

Navigation