Skip to main content
Log in

The aging behavior of degradable plastic polylactic acid under the interaction of environmental factors

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Microplastics leaching from aging biodegradable plastics pose potential environmental threats. This study used response surface methodology (RSM) to investigate the impact of temperature, light, and humidity on the aging characteristics of polylactic acid (PLA). Key evaluation metrics included the C/O ratio, functional groups, crystallinity, surface topography, and mechanical properties. Humidity was discovered to have the greatest effect on the ageing of PLA, followed by light and temperature. The interactions between temperature and light, as well as humidity and sunlight, significantly impact the aging of PLA. XPS analysis revealed PLA underwent aging due to the cleavage of the ester bond (O–C=O), resulting in the addition of C=O and C–O. The aging process of PLA was characterized by alterations in surface morphology and augmentation in crystallinity, resulting in a decline in both tensile strength and elongation. These findings might offer insights into the aging behavior of degradable plastics under diverse environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Al Hosni, A. S., Pittman, J. K., & Robson, G. D. (2019). Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 97, 105–114.

    Article  CAS  Google Scholar 

  • Bátori, V., Åkesson, D., Zamani, A., Taherzadeh, M. J., & Sárvári Horváth, I. (2018). Anaerobic degradation of bioplastics: A review. Waste Management, 80, 406–413.

    Article  Google Scholar 

  • Borrelle, S. B., Ringma, J., Law, K. L., Monnahan, C. C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G. H., Hilleary, M. A., Eriksen, M., Possingham, H. P., De Frond, H., Gerber, L. R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., & Rochman, C. M. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510), 1515+.

    Article  CAS  Google Scholar 

  • Bunker, G. (2010). Introduction to XAFS: A practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press.

    Book  Google Scholar 

  • Chang, Q., Zhu, D., Hu, L., Kim, H., Liu, Y., & Cai, L. (2022). Rapid photo aging of commercial conventional and biodegradable plastic bags. Science of the Total Environment, 822, 153235.

    Article  CAS  Google Scholar 

  • Cisar, J., Drohsler, P., Pummerova, M., Sedlarik, V., & Skoda, D. (2023). Composite based on PLA with improved shape stability under high-temperature conditions. Polymer, 276, 125943.

    Article  CAS  Google Scholar 

  • Copinet, A., Bertrand, C., Govindin, S., Coma, V., & Couturier, Y. (2004). Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere, 55(5), 763–773.

    Article  CAS  Google Scholar 

  • Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., & Bruzaud, S. (2014). Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, 108, 319–329.

    Article  Google Scholar 

  • Ding, L., Mao, R., Ma, S., Guo, X., & Zhu, L. (2020). High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Research, 174, 115634.

    Article  CAS  Google Scholar 

  • Du, S., Zhu, R., Cai, Y., Xu, N., Yap, P.-S., Zhang, Y., He, Y., & Zhang, Y. (2021). Environmental fate and impacts of microplastics in aquatic ecosystems: A review. RSC Advances, 11(26), 15762–15784.

    Article  CAS  Google Scholar 

  • Du, Y., Wu, T., Yan, N., Kortschot, M. T., & Farnood, R. (2014). Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Composites Part B: Engineering, 56, 717–723.

    Article  CAS  Google Scholar 

  • Eich, A., Weber, M., & Lott, C. (2021). Disintegration half-life of biodegradable plastic films on different marine beach sediments. PeerJ, 9, e11981.

    Article  Google Scholar 

  • Elsawy, M. A., Kim, K.-H., Park, J.-W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346–1352.

    Article  CAS  Google Scholar 

  • Fan, P., Yu, H., Xi, B., & Tan, W. (2022). A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: Are biodegradable plastics substitute or threat? Environment International, 163, 107244.

    Article  Google Scholar 

  • Gewert, B., Plassmann, M. M., & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science. Processes & Impacts, 17(9), 1513–1521.

    Article  CAS  Google Scholar 

  • Hablot, E., Dharmalingam, S., Hayes, D. G., Wadsworth, L. C., Blazy, C., & Narayan, R. (2014). Effect of simulated weathering on physicochemical properties and inherent biodegradation of PLA/PHA nonwoven mulches. Journal of Polymers and the Environment, 22(4), 417–429.

    Article  CAS  Google Scholar 

  • Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the future? the impact of biodegradable polymers on the environment and on society. Angewandte Chemie (international Ed. in English), 58(1), 50–62.

    Article  CAS  Google Scholar 

  • Huang, Y., Ding, J., Zhang, G., Liu, S., Zou, H., Wang, Z., Zhu, W., & Geng, J. (2021). Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging. Science of the Total Environment, 752, 142256.

    Article  CAS  Google Scholar 

  • Kedzierski, M., D’Almeida, M., Magueresse, A., Le Grand, A., Duval, H., César, G., Sire, O., Bruzaud, S., & Le Tilly, V. (2018). Threat of plastic ageing in marine environment Adsorption/desorption of micropollutants. Marine Pollution Bulletin, 127, 684–694.

    Article  CAS  Google Scholar 

  • Lesaffre, N., Bellayer, S., Vezin, H., Fontaine, G., Jimenez, M., & Bourbigot, S. (2017). Recent advances on the ageing of flame retarded PLA: Effect of UV-light and/or relative humidity. Polymer Degradation and Stability, 139, 143–164.

    Article  CAS  Google Scholar 

  • Liu, H., Zhang, Z., Tian, Z., & Lu, C. (2022). Exploration for UV aging characteristics of asphalt binders based on response surface methodology: Insights from the UV aging influencing factors and their interactions. Construction and Building Materials, 347, 128460.

    Article  CAS  Google Scholar 

  • Miri, S., Saini, R., Davoodi, S. M., Pulicharla, R., Brar, S. K., & Magdouli, S. (2022). Biodegradation of microplastics: Better late than never. Chemosphere, 286, 131670.

    Article  CAS  Google Scholar 

  • Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & Abdul Ghani, A. (2021). Expanding policy for biodegradable plastic products and market dynamics of bio-based plastics: Challenges and opportunities. Sustainability, 13(11), 6170.

    Article  CAS  Google Scholar 

  • Napper, I. E., & Thompson, R. C. (2019). Environmental deterioration of biodegradable, Oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environmental Science & Technology, 53(9), 4775–4783.

    Article  CAS  Google Scholar 

  • Osman, A. I., Hosny, M., Eltaweil, A. S., Omar, S., Elgarahy, A. M., Farghali, M., Yap, P.-S., Wu, Y.-S., Nagandran, S., Batumalaie, K., Gopinath, S. C. B., John, O. D., Sekar, M., Saikia, T., Karunanithi, P., Hatta, M. H. M., & Akinyede, K. A. (2023). Microplastic sources, formation, toxicity and remediation: A review. Environmental Chemistry Letters, 21(4), 2129–2169.

    Article  CAS  Google Scholar 

  • Peng, B.-Y., Chen, Z., Chen, J., Zhou, X., Wu, W.-M., & Zhang, Y. (2021). Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: A sustainable approach for waste management. Journal of Hazardous Materials, 416, 125803.

    Article  CAS  Google Scholar 

  • Qin, Q., Yang, Y., Yang, C., Zhang, L., Yin, H., Yu, F., & Ma, J. (2022). Degradation and adsorption behavior of biodegradable plastic PLA under conventional weathering conditions. Science of the Total Environment, 842, 156775.

    Article  CAS  Google Scholar 

  • Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265.

    Article  CAS  Google Scholar 

  • Shruti, V. C., & Kutralam-Muniasamy, G. (2019). Bioplastics: Missing link in the era of Microplastics. Science of the Total Environment, 697, 134139.

    Article  CAS  Google Scholar 

  • Si, P., Hao, N., Liu, Y., Zhang, Y., Ying, J., Wang, F., & Qi, Y. (2015). Preparation of PLA/PBAT films and their degradation properties. Plastics Technology, 43(10), 68–72.

    CAS  Google Scholar 

  • Si, P., Hao, N., Liu, Y., Zhang, Y., Ying, J., Wang, F., & Qi, Y. (2016). Photo-oxidative aging behavior of PLA/PBAT films. Functional Material, 47(07), 7114–7120.

    CAS  Google Scholar 

  • Wang, C., Xian, Z., Jin, X., Liang, S., Chen, Z., Pan, B., Wu, B., Ok, Y. S., & Gu, C. (2020). Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids. Water Research, 183, 116082.

    Article  CAS  Google Scholar 

  • Wang, Z., Ding, J., Song, X., Zheng, L., Huang, J., Zou, H., & Wang, Z. (2023). Aging of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends under different conditions: Environmental concerns on biodegradable plastic. Science of the Total Environment, 855, 158921.

    Article  CAS  Google Scholar 

  • Wei, X.-F., Bohlén, M., Lindblad, C., Hedenqvist, M., & Hakonen, A. (2021). Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Research, 198, 117123.

    Article  CAS  Google Scholar 

  • Weng, Y.-X., Jin, Y.-J., Meng, Q.-Y., Wang, L., Zhang, M., & Wang, Y.-Z. (2013). Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polymer Testing, 32(5), 918–926.

    Article  CAS  Google Scholar 

  • Wong, J. K. H., Lee, K. K., Tang, K. H. D., & Yap, P.-S. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719, 137512.

    Article  CAS  Google Scholar 

  • Ying, Q., Lu, Y., Zhang, C., Liu, C., Xia, Y., Zhou, A., Gan, G., & Cao, Z. (2016). Preparation and properties of PLA/PCL/talc composites. Engineering Plastics Applications, 44(08), 31–35.

    CAS  Google Scholar 

  • Yu, J., Xu, S., Liu, B., Wang, H., Qiao, F., Ren, X., & Wei, Q. (2023). PLA bioplastic production: From monomer to the polymer. European Polymer Journal, 193, 112076.

    Article  CAS  Google Scholar 

  • Zeenat, E. A., Bukhari, D. A., Shamim, S., & Rehman, A. (2021). Plastics degradation by microbes: A sustainable approach. Journal of King Saud University—Science, 33(6), 101538.

    Article  Google Scholar 

  • Zhang, F., Sun, Y., Li, J., Su, H., Zhu, Z., Yan, B., Cheng, Z., & Chen, G. (2022). Pyrolysis of 3D printed polylactic acid waste: A kinetic study via TG-FTIR/GC-MS analysis. Journal of Analytical and Applied Pyrolysis, 166, 105631.

    Article  CAS  Google Scholar 

  • Zhang, P., You, P., Feng, J., Xie, R., Chen, L., Xiong, Y., & Song, P. (2023). Vitrimer-like, mechanically Robust, healable and recyclable biobased elastomers based on epoxy natural Rubbers, polylactide and layered double hydroxide. Composites Part a: Applied Science and Manufacturing, 171, 107575.

    Article  CAS  Google Scholar 

  • Zheng, M., Wu, P., Li, L., Yu, F., & Ma, J. (2023). Adsorption/desorption behavior of ciprofloxacin on aged biodegradable plastic PLA under different exposure conditions. Journal of Environmental Chemical Engineering, 11(1), 109256.

    Article  CAS  Google Scholar 

  • Zhong, K., Xiao, Y., Xing, L., & Deng, J. (2021). Orthogonal experimental design and polar analysis for TPCT extraction from coal fire thermal energy. Chinese Journal of Safety Science, 31(09), 135–141.

    Google Scholar 

  • Zhu, K., Jia, H., Sun, Y., Dai, Y., Zhang, C., Guo, X., Wang, T., & Zhu, L. (2020). Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Research, 173, 115564.

    Article  CAS  Google Scholar 

  • Zhu, K., Jia, H., Zhao, S., Xia, T., Guo, X., Wang, T., & Zhu, L. (2019). Formation of environmentally persistent free radicals on microplastics under light irradiation. Environmental Science and Technology, 53(14), 8177–8186.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express special thanks to the National Engineering Research Center for Inland Waterway Regulation for providing experimental conditions. And the financial support from National Natural Science Foundation of China, Technological Innovation and Application Development, and Chongqing Education Commission, and Open Fund of Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education are gratefully acknowledged.

Funding

Special Key Program for Natural Science Foundation of China (NSFC 52000018), Technological Innovation and Application Development in Chongqing (CSTB2022TIAD-KPX0133, CSTB2022TIAD-KPX0198), the Joint Key Program of Science and Technology Project between Chongqing Science and Technology Bureau and Chongqing Water Resources Bureau (CQSLK-2022001), and Major Science and Technology Program of the Ministry of Water Resources (SKS-2022076), Chongqing Education Commission Foundation (KJZD-K202103801, KJQN-202000745).

Author information

Authors and Affiliations

Authors

Contributions

Jiang Hui: Made substantial contributions to the conception or design of the work, and manuscript preparation; Yiqun Wang: Participate in experiments and data analysis; Yuanyuan Huang, Yufeng Mao: Contributed significantly to data analysis; Sisi Que, Yulian Lin: Helped perform the analysis with constructive discussions; Xiaoling Lei and Yuanyuan Huang: Participate in experiments and data analysis, Manuscript submission.

Corresponding authors

Correspondence to Yuanyuan Huang or Xiaoling Lei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

We state that the study does not involve human subjects.

Consent to participate

The authors declare that the study does not involve human materials.

Consent to publish

All authors have consented for the manuscript content for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 867 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Wang, Y., Sun, J. et al. The aging behavior of degradable plastic polylactic acid under the interaction of environmental factors. Environ Geochem Health 46, 163 (2024). https://doi.org/10.1007/s10653-024-01932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01932-5

Keywords

Navigation