Skip to main content

Advertisement

Log in

Appraisal of contamination, source identification and health risk assessment of selected metals in the agricultural soil of Chakwal, Pakistan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Contamination of metals in agricultural soil is a serious global threat but there are limited reports related to their risks in major agronomic areas. The current study is aimed to assess the distribution of selected macroelements and essential/toxic trace metals (Ca, Mg, Na, K, Sr, Li, Ag, Fe, Zn, Co, Cu, Mn, Cd, Cr, Pb and Ni) in the agricultural soil of Chakwal, Pakistan, in order to appraise their contamination status, source identification and probable human health risks. Quantification of the metals was performed by AAS employing aqua regia digestion method. Among the selected metals, dominant mean concentrations were observed for Ca (48,285 mg/kg) and Fe (30,120 mg/kg), followed by Mg (9171 mg/kg), K (973.3 mg/kg), Mn (399.0 mg/kg) and Na (368.9 mg/kg). The correlation study indicated strong mutual relationships among the metals as well as physicochemical properties. Multivariate analysis (PCA/CA) of the metal levels revealed their diverse anthropogenic sources in the soil. Various pollution indices indicated extremely high contamination/enrichment of Cd, followed by moderate enrichment/contamination of Ag in the soil. The HQ values for most of the metals manifested insignificant non-cancer risks. The average CR value of Cr was exceeding the safe limit (1.0E-06) for both ingestion and inhalation exposure, indicating a considerable lifelong cancer risk for the population. The results of this study will provide a better understanding related to the contamination of agricultural soil and its effects on human health and to promote effective actions to reduce the soil pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

ABS:

Dermal absorption factor

AF:

Adherence factor for soil to the skin

AT:

Average time

BD:

Bulk density

B n :

Average geochemical background value

BW:

Average body weight

CA:

Cluster analysis

Cf:

Contamination factor

CF:

Unit conversion factor

C m :

Average metal content in the soil or earth crust

C n :

Mean metal content in the soil sample

C o :

Reference value of the metal in uncontaminated soil

CR:

Cancer risk

C S :

Average level of the reference metal in soil or earth crust

CSF:

Carcinogenic slope factor

C soil :

Mean concentration of the metal in soil

EC:

Electrical conductivity

ED:

Exposure duration

EDI:

Exposure daily intake

EDIderm :

Estimated daily intake via dermal absorption

EDIing :

Estimated daily intake via ingestion

EDIinh :

Estimated daily intake via inhalation

EF:

Enrichment factor

EF:

Exposure frequency

HI:

Hazard index

HQing/derm/inh :

Hazard quotient via ingestion or dermal or inhalation routes

I geo :

Geoaccumulation index

ILCR:

Probability of an individual developing cancer over a lifetime

ISO:

International organization for standardization

mC d :

Modified degree of contamination

PCA:

Principal component analysis

PCs:

Principle components

PEF:

Particulate emission factor

QA:

Quality assurance

QC:

Quality control

RfD:

Corresponding reference dose

R ing :

Rate of intake through ingestion

R inh :

Rate of intake through inhalation

SA:

Exposed skin area

SD:

Standard deviation

SE:

Standard error

TDS:

Total dissolved solids

References

  • Abbas, S., Mazhar, N., Jabeen, S., Jamil, M., & Ahmad, F. (2022). Soil potential in physicochemical properties and its impacts on sustainable land planning, Neelam River Basin, AJK, Pakistan. International Journal of Environmental Science and Technology, 19, 9329–9344. https://doi.org/10.1007/s13762-021-03800-6

    Article  CAS  Google Scholar 

  • Aboubakar, A., Douaik, A., Mewouo, Y. C. M., Madong, R. C. B. A., Dahchour, A., & El Hajjaji, S. (2021). Determination of background values and assessment of pollution and ecological risk of heavy metals in urban agricultural soils of Yaoundé, Cameroon. Journal of Soils and Sediments, 21, 1437–1454. https://doi.org/10.1007/s11368-021-02876-4

    Article  CAS  Google Scholar 

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238. https://doi.org/10.1007/s10661-007-9678-2

    Article  CAS  Google Scholar 

  • Adimalla, N., Chen, J., & Qian, H. (2020). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, 110406. https://doi.org/10.1016/j.ecoenv.2020.110406

    Article  CAS  Google Scholar 

  • Adimalla, N. (2020). Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42, 59–75. https://doi.org/10.1007/s10653-019-00270-1

    Article  CAS  Google Scholar 

  • Ali, I., Khan, I. U., Khan, M. J., Sardar, T., Deeba, F., Hussain, H., & Khan, M. D. (2020a). Exploring geochemical assessment and spatial distribution of heavy metals in soils of Southern KP, Pakistan: Employing multivariate analysis. International Journal of Environmental Analytical Chemistry, 102, 5904–5918. https://doi.org/10.1080/03067319.2020.1804894

    Article  CAS  Google Scholar 

  • Ali, J., Khan, S., Khan, A., Waqas, M., & Nasir, M. J. (2020b). Contamination of soil with potentially toxic metals and their bioaccumulation in wheat and associated health risk. Environmental Monitoring and Assessment, 192, 1–12. https://doi.org/10.1007/s10661-020-8096-6

    Article  CAS  Google Scholar 

  • Alsafran, M., Saleem, M. H., Al Jabri, H., Rizwan, M., & Usman, K. (2022). Principles and applicability of integrated remediation strategies for heavy metal removal/recovery from contaminated environments. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-022-10803-1

    Article  Google Scholar 

  • Alsafran, M., Usman, K., Al Jabri, H., & Rizwan, M. (2021). Ecological and health risks assessment of potentially toxic metals and metalloids contaminants: A case study of agricultural soils in Qatar. Toxics, 9, 35. https://doi.org/10.3390/toxics9020035

    Article  CAS  Google Scholar 

  • Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., & Gates, W. (2018). Soil bulk density estimation methods: A review. Pedosphere, 28, 581–596. https://doi.org/10.1016/s1002-0160(18)60034-7

    Article  Google Scholar 

  • Ara, T., Nisa, W. U., Aziz, R., Rafiq, M. T., Gill, R. A., Hayat, M. T., & Afridi, U. (2021). Health risk assessment of hexachlorocyclohexane in soil, water and plants in the agricultural area of Potohar region, Punjab, Pakistan. Environmental Geochemistry and Health, 43, 1–17. https://doi.org/10.1007/s10653-021-00847-9

    Article  CAS  Google Scholar 

  • Bakshi, M., & Kumar, A. (2021). Copper-based nanoparticles in the soil-plant environment: Assessing their applications, interactions, fate and toxicity. Chemosphere, 281, 130940. https://doi.org/10.1016/j.chemosphere.2021.130940

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Karmaker, S. C., Bodrud-Doza, M., Rakib, M. A., & Saha, B. B. (2021). Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of Dhaka district employing SOM. PMF and GIS Methods. Chemosphere, 263, 128339. https://doi.org/10.1016/j.chemosphere.2020.128339

    Article  CAS  Google Scholar 

  • Cerda, A., Daliakopoulos, I. N., Terol, E., Novara, A., Fatahi, Y., Moradi, E., & Pulido, M. (2021). Long-term monitoring of soil bulk density and erosion rates in two Prunus Persica (L) plantations under flood irrigation and glyphosate herbicide treatment in La Ribera district, Spain. Journal of Environmental Management, 282, 111965. https://doi.org/10.1016/j.jenvman.2021.111965

    Article  CAS  Google Scholar 

  • Chen, F., Ma, J., Akhtar, S., Khan, Z. I., Ahmad, K., Ashfaq, A., & Nadeem, M. (2022). Assessment of chromium toxicity and potential health implications of agriculturally diversely irrigated food crops in the semi-arid regions of South Asia. Agricultural Water Management, 272, 107833. https://doi.org/10.1016/j.agwat.2022.107833

    Article  Google Scholar 

  • Chen, T., Chang, Q., Liu, J., Clevers, J. G. P. W., & Kooistra, L. (2016). Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Science of the Total Environment, 565, 155–164. https://doi.org/10.1016/j.scitotenv.2016.04.163

    Article  CAS  Google Scholar 

  • Costa, C., & Lia, F. (2022). Temporal variations of heavy metal sources in agricultural soils in Malta. Applied Sciences, 12, 3120. https://doi.org/10.3390/app12063120

    Article  CAS  Google Scholar 

  • Edeh, I. G., Masek, O., & Buss, W. (2020). A meta-analysis on biochar’s effects on soil water properties–New insights and future research challenges. Science of the Total Environment, 714, 136857. https://doi.org/10.1016/j.scitotenv.2020.136857

    Article  CAS  Google Scholar 

  • El Hamzaoui, E. H., El Baghdadi, M., Oumenskou, H., Aadraoui, M., & Hilali, A. (2020). Spatial repartition and contamination assessment of heavy metal in agricultural soils of Beni-Moussa, Tadla plain (Morocco). Modeling Earth Systems and Environment, 6, 1387–1406. https://doi.org/10.1007/s40808-020-00756-3

    Article  Google Scholar 

  • Emam, W. W., & Soliman, K. M. (2022). Geospatial analysis, source identification, contamination status, ecological and health risk assessment of heavy metals in agricultural soils from Qallin city, Egypt. Stochastic Environmental Research and Risk Assessment, 36, 2437–2459. https://doi.org/10.1007/s00477-021-02097-8

    Article  Google Scholar 

  • Ennaji, W., Barakat, A., El Baghdadi, M., & Rais, J. (2020). Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. Journal of Sedimentary Environments, 5, 307–320. https://doi.org/10.1007/s43217-020-00020-9

    Article  Google Scholar 

  • Golia, E. E., & Diakoloukas, V. (2022). Soil parameters affecting the levels of potentially harmful metals in Thessaly area, Greece: A robust quadratic regression approach of soil pollution prediction. Environmental Science and Pollution Research, 29, 29544–29561. https://doi.org/10.1007/s11356-021-14673-0

    Article  CAS  Google Scholar 

  • Gupta, N., Yadav, K. K., Kumar, V., Cabral-Pinto, M. M., Alam, M., Kumar, S., & Prasad, S. (2021). Appraisal of contamination of heavy metals and health risk in agricultural soil of Jhansi city, India. Environmental Toxicology and Pharmacology, 88, 103740. https://doi.org/10.1016/j.etap.2021.103740

    Article  CAS  Google Scholar 

  • Hasan, M., Kausar, D., Akhter, G., & Shah, M. H. (2018). Evaluation of the mobility and pollution index of selected essential/toxic metals in paddy soil by sequential extraction method. Ecotoxicology and Environmental Safety, 147, 283–291. https://doi.org/10.1016/j.ecoenv.2017.08.054

    Article  CAS  Google Scholar 

  • Heidari, A., Kumar, V., & Keshavarzi, A. (2021). Appraisal of metallic pollution and ecological risks in agricultural soils of Alborz province, Iran, employing contamination indices and multivariate statistical analyses. International Journal of Environmental Health Research, 31, 607–625. https://doi.org/10.1080/09603123.2019.1677864

    Article  CAS  Google Scholar 

  • Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, 379–420. https://doi.org/10.1007/s42773-020-00065-z

    Article  Google Scholar 

  • Hu, B., Shao, S., Ni, H., Fu, Z., Huang, M., Chen, Q., & Shi, Z. (2021). Assessment of potentially toxic element pollution in soils and related health risks in 271 cities across China. Environmental Pollution, 270, 116196. https://doi.org/10.1016/j.envpol.2020.116196

    Article  CAS  Google Scholar 

  • Hussain, I., Afzal, S., Ashraf, M. A., Rasheed, R., Saleem, M. H., Alatawi, A., & Fahad, S. (2023). Effect of metals or trace elements on wheat growth and its remediation in contaminated soil. Journal of Plant Growth Regulation, 42, 2258–2282. https://doi.org/10.1007/s00344-022-10700-7

    Article  CAS  Google Scholar 

  • Imtiaz H, Zahra K, Raza S, (2021) Captivating architecture of Samadhis (Commemorative Tombs), Chakwal, Punjab, Pakistan. Ancient Asia. https://doi.org/10.5334/aa.228.

  • Ishaq, M., Ali, L., Muhammad, S., Din, I. U., Yaseen, M., & Ullah, H. (2020). Potentially toxic elements’ occurrence and risk assessment through water and soil of Chitral urban environment, Pakistan: A case study. Environmental Geochemistry and Health, 42, 4355–4368. https://doi.org/10.1007/s10653-020-00531-4

    Article  CAS  Google Scholar 

  • Islam, M., Razzaq, A., Zubair, M., Hassan, S., Ahmad, S., Gul, S., & Louhaichi, M. (2022). Impact of rangeland enclosure and seasonal grazing on protected and unprotected rangelands in Chakwal region, Pakistan. Journal of Mountain Science, 19, 46–57. https://doi.org/10.1007/s11629-021-6761-z

    Article  Google Scholar 

  • ISO. (1995). Soil quality: Extraction of trace elements soluble in aqua regia. International Standard Organization, (ISO, 11466).

  • ISO. (2017). Soil quality-determination of dry bulk density. International Standard Organization, Geneva (ISO 11272–2017).

  • Jadoon, W. A., & Malik, R. N. (2019). Geochemical approach for heavy metals in suburban agricultural soils of Sialkot, Pakistan. SN Applied Sciences, 1, 1–11. https://doi.org/10.1007/s42452-019-0167-3

    Article  CAS  Google Scholar 

  • Jayakumar, M., Surendran, U., Raja, P., Kumar, A., & Senapathi, V. (2021). A review of heavy metals accumulation pathways, sources and management in soils. Arabian Journal of Geosciences, 14, 1–19. https://doi.org/10.1007/s12517-021-08543-9

    Article  CAS  Google Scholar 

  • Jolly, Y. N., Rakib, M. R. J., Sakib, M. S., Shahadat, M. A., Rahman, A., Akter, S., & Idris, A. M. (2022). Impact of industrially affected soil on humans: A soil-human and soil-plant-human exposure assessment. Toxics, 10, 347. https://doi.org/10.3390/toxics10070347

    Article  CAS  Google Scholar 

  • Kargas, G., Londra, P., & Sgoubopoulou, A. (2020). Comparison of soil EC values from methods based on 1: 1 and 1: 5 soil to water ratios and EC from saturated paste extract based method. Water, 12, 1010. https://doi.org/10.3390/w12041010

    Article  Google Scholar 

  • Keshavarzi, A., Kumar, V., Ertunç, G., & Brevik, E. C. (2021). Ecological risk assessment and source apportionment of heavy metals contamination: An appraisal based on the Tellus soil survey. Environmental Geochemistry and Health, 43, 2121–2142. https://doi.org/10.1007/s10653-020-00787-w

    Article  CAS  Google Scholar 

  • Khan, S., Naushad, M., Lima, E. C., Zhang, S., Shaheen, S. M., & Rinklebe, J. (2021). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies–a review. Journal of Hazardous Materials, 417, 126039. https://doi.org/10.1016/j.jhazmat.2021.126039

    Article  CAS  Google Scholar 

  • Khan, Y. K., Toqeer, M., & Shah, M. H. (2022). Mobility, bioaccessibility, pollution assessment and risk characterization of potentially toxic metals in the urban soil of Lahore, Pakistan. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01270-4

    Article  Google Scholar 

  • Khan, Y. K., & Shah, M. H. (2023). Fractionation, source apportionment, and health risk assessment of selected metals in the soil of public parks of Lahore, Pakistan. Environmental Earth Sciences, 82, 311. https://doi.org/10.1007/s12665-023-11013-y

    Article  CAS  Google Scholar 

  • Kharazi, A., Leili, M., Khazaei, M., Alikhani, M. Y., & Shokoohi, R. (2021). Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. Journal of Food Composition and Analysis, 100, 103890. https://doi.org/10.1016/j.jfca.2021.103890

    Article  CAS  Google Scholar 

  • Kumar, V., Pandita, S., Sharma, A., Bakshi, P., Sharma, P., Karaouzas, I., & Cerda, A. (2021). Ecological and human health risks appraisal of metal (loid) s in agricultural soils: A review. Geology, Ecology, and Landscapes, 5, 173–185. https://doi.org/10.1080/24749508.2019.1701310

    Article  Google Scholar 

  • Laidlaw, M. A., Alankarage, D. H., Reichman, S. M., Taylor, M. P., & Ball, A. S. (2018). Assessment of soil metal concentrations in residential and community vegetable gardens in Melbourne, Australia. Chemosphere, 199, 303–311. https://doi.org/10.1016/j.chemosphere.2018.02.044

    Article  CAS  Google Scholar 

  • Latif, R., Ehsan, M., Latif, A., Jan, M., Arsalan, M., Khan, M., & Waheed, A. (2022). Characterization and assessment of irrigation water quality: a GIS based study of district Chakwal, Pakistan. Journal of Applied Research in Plant Sciences, 3, 303–310. https://doi.org/10.38211/joarps.2022.3.2.37

    Article  Google Scholar 

  • Lebbos, N., Keller, C., Dujourdy, L., Afram, M., Curmi, P., Darwish, T., & Bou-Maroun, E. (2021). Validation of a new method for monitoring trace elements in Mediterranean cereal soils. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1953000

    Article  Google Scholar 

  • Li, Z., Liang, Y., Hu, H., Shaheen, S. M., Zhong, H., Tack, F. M., & Zhao, J. (2021). Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 156, 106749. https://doi.org/10.1016/j.envint.2021.106749

    Article  CAS  Google Scholar 

  • Li, H. H., Chen, L. J., Yu, L., Guo, Z. B., Shan, C. Q., Lin, J. Q., Gu, Y. G., Yang, Z. B., Yang, Y. X., Shao, J. R., Zhu, X. M., & Cheng, Z. (2017). Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Science of the Total Environment, 586, 1076–1084. https://doi.org/10.1016/j.scitotenv.2017.02.092

    Article  CAS  Google Scholar 

  • Liu, L., Zhang, X., & Zhong, T. (2016). Pollution and health risk assessment of heavy metals in urban soil in China. Human and Ecological Risk Assessment, 22, 424–434. https://doi.org/10.1080/10807039.2015.1078226

    Article  CAS  Google Scholar 

  • Maina, M., Maidugu, D. W., Adamu, A., & Balami, S. D. (2020). Compaction as affected by bulk density and dry density of a soil. IOSR Journal of Applied Physics, 12, 2278–4861.

    Google Scholar 

  • Mehmood, S., Imtiaz, M., Bashir, S., Rizwan, M., Irshad, S., Yuvaraja, G., & Tu, S. (2019). Leaching behavior of Pb and Cd and transformation of their speciation in co-contaminated soil receiving different passivators. Environmental Engineering Science, 36, 749–759. https://doi.org/10.1089/ees.2018.0503

    Article  CAS  Google Scholar 

  • Mohammadi, A., Mansour, S. N., Najafi, M. L., Toolabi, A., Abdolahnejad, A., Faraji, M., & Miri, M. (2022). Probabilistic risk assessment of soil contamination related to agricultural and industrial activities. Environmental Research, 203, 111837. https://doi.org/10.1016/j.envres.2021.111837

    Article  CAS  Google Scholar 

  • Mohammadi, A. A., Zarei, A., Esmaeilzadeh, M., Taghavi, M., Yousefi, M., Yousefi, Z., & Javan, S. (2020). Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur, Iran. Biological Trace Element Research, 195, 343–352. https://doi.org/10.1007/s12011-019-01816-1

    Article  CAS  Google Scholar 

  • Mondal, S., & Chakraborty, D. (2022). Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma, 405, 115443. https://doi.org/10.1016/j.geoderma.2021.115443

    Article  Google Scholar 

  • Moursy, A. R., Hassan, M. N., & Elhefny, T. M. (2022). Sampling and analysis of soil and water: A review. International Journal of Geography, Geology and Environment, 4, 34–41.

    Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118. https://doi.org/10.1021/acs.est.9b01363.s001

    Article  Google Scholar 

  • Munir, N., Jahangeer, M., Bouyahya, A., El Omari, N., Ghchime, R., Balahbib, A., & Shariati, M. A. (2022). Heavy metal contamination of natural foods is a serious health issue: A review. Sustainability, 14, 161. https://doi.org/10.3390/su14010161

    Article  CAS  Google Scholar 

  • Nazzal, Y., Bărbulescu, A., Howari, F., Al-Taani, A. A., Iqbal, J., Xavier, C. M., & Dumitriu, C. S. (2021). Assessment of metals concentrations in soils of Abu Dhabi Emirate using pollution indices and multivariate statistics. Toxics, 9, 95. https://doi.org/10.3390/toxics9050095

    Article  CAS  Google Scholar 

  • Nkoh, J. N., Baquy, M., Mia, S., Shi, R., Kamran, M. A., Mehmood, K., & Xu, R. (2021). A critical-systematic review of the interactions of biochar with soils and the observable outcomes. Sustainability, 13, 13726. https://doi.org/10.3390/su132413726

    Article  CAS  Google Scholar 

  • Nugraha, E. D., Mellawati, J., Kranrod, C., Tazoe, H., Ahmad, H., Hosoda, M., & Tokonami, S. (2022). Heavy metal assessments of soil samples from a high natural background radiation area, Indonesia. Toxics, 10, 39. https://doi.org/10.3390/toxics10010039

    Article  CAS  Google Scholar 

  • Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International Journal of Environmental Research and Public Health, 17, 2204. https://doi.org/10.3390/ijerph17072204

    Article  CAS  Google Scholar 

  • Okur, B., Orcen, N. (2020). Soil salinization and climate change. In: Climate change and soil interactions. Elsevier, pp. 331–350.

  • Olatunde, K. A., Sosanya, P. A., Bada, B. S., Ojekunle, Z. O., & Abdussalaam, S. A. (2020). Distribution and ecological risk assessment of heavy metals in soils around a major cement factory, Ibese, Nigeria. Scientific African, 9, e00496. https://doi.org/10.1016/j.sciaf.2020.e00496

    Article  Google Scholar 

  • Oumenskou, H., El Baghdadi, M., Barakat, A., Aquit, M., Ennaji, W., Karroum, L. A., & Aadraoui, M. (2019). Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geology, Ecology, and Landscapes, 3, 83–94. https://doi.org/10.1080/24749508.2018.1504272

    Article  Google Scholar 

  • Pandey, M., Tirkey, A., Tiwari, A., Lee, S. S., Dubey, R., Kim, K. H., & Pandey, S. K. (2022). The environmental significance of contaminants of concern in the soil–vegetable interface: Sources, accumulation, health risks, and mitigation through biochar. Sustainability, 14, 14539. https://doi.org/10.3390/su142114539

    Article  CAS  Google Scholar 

  • Prabagar, S., Dharmadasa, R. M., Lintha, A., Thuraisingam, S., & Prabagar, J. (2021). Accumulation of heavy metals in grape fruit, leaves, soil and water: A study of influential factors and evaluating ecological risks in Jaffna, Sri Lanka. Environmental and Sustainability Indicators, 12, 100147. https://doi.org/10.1016/j.indic.2021.100147

    Article  Google Scholar 

  • Proshad, R., Islam, M. S., Kormoker, T., Bhuyan, M. S., Hanif, M. A., Hossain, N., & Sharma, A. (2019). Contamination of heavy metals in agricultural soils: Ecological and health risk assessment. SF Journal of Nanochemistry and Nanotechnology, 2, 1012. https://doi.org/10.14419/ijag.v6i1.9791

    Article  Google Scholar 

  • Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis. Cambridge, UK: The Royal Society of Chemistry.

    Book  Google Scholar 

  • Ray, R., Mandal, S. K., González, A. G., Pokrovsky, O. S., & Jana, T. K. (2021). Storage and recycling of major and trace element in mangroves. Science of the Total Environment, 780, 146379. https://doi.org/10.1016/j.scitotenv.2021.146379

    Article  CAS  Google Scholar 

  • Salem, M. A., Bedade, D. K., Al-Ethawi, L., & Al-Waleed, S. M. (2020). Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon, 6, e05224. https://doi.org/10.1016/j.heliyon.2020.e05224

    Article  CAS  Google Scholar 

  • Samaei, F., Emami, H., & Lakzian, A. (2022). Assessing soil quality of pasture and agriculture land uses in Shandiz county, northwestern Iran. Ecological Indicators, 139, 108974. https://doi.org/10.1016/j.ecolind.2022.108974

    Article  CAS  Google Scholar 

  • Samuel, B., Solomon, S., Daniel, F., Zinabu, G. M., & Riise, G. (2020). Heavy metals contamination of soil in the vicinity of Hawassa industrial zone, Ethiopia. Journal of Applied Sciences and Environmental Management, 24, 1447–1454. https://doi.org/10.4314/jasem.v24i8.21

    Article  CAS  Google Scholar 

  • Sarwar, T., Shahid, M., Khalid, S., Shah, A. H., Ahmad, N., Naeem, M. A., & Bakhat, H. F. (2020). Quantification and risk assessment of heavy metal build-up in soil–plant system after irrigation with untreated city wastewater in Vehari, Pakistan. Environmental Geochemistry and Health, 42, 4281–4297. https://doi.org/10.1007/s10653-019-00358-8

    Article  CAS  Google Scholar 

  • Shah, M. H., Ilyas, A., Akhter, G., & Bashir, A. (2019). Pollution assessment and source apportionment of selected metals in rural (Bagh) and urban (Islamabad) farmlands, Pakistan. Environmental Earth Sciences, 78, 1–13. https://doi.org/10.1007/s12665-019-8198-z

    Article  CAS  Google Scholar 

  • Siddiqui, S., Safi, M. W. A., Tariq, A., Rehman, N. U., & Haider, S. W. (2020). GIS based universal soil erosion estimation in district Chakwal Punjab, Pakistan. International Journal of Economic and Environmental Geology, 11, 30–36. https://doi.org/10.46660/ijeeg.vol11.iss2.2020.443

    Article  Google Scholar 

  • Sihlahla, M., Mouri, H., & Nomngongo, P. N. (2020). Assessment of bioavailability and mobility of major and trace elements in agricultural soils collected in Port St Johns, Eastern Cape, South Africa using single extraction procedures and pseudo-total digestion. Journal of Environmental Health Science and Engineering, 18, 1615–1628. https://doi.org/10.1007/s40201-020-00581-x

    Article  CAS  Google Scholar 

  • Singh, S. P., Singh, M. K. (2020). Soil pollution and human health. In: Plant responses to soil pollution. Springer, Singapore, pp. 205–220. https://doi.org/10.1007/978-981-15-4964-9_13.

  • Su, R., Wang, Y., Huang, S., Chen, R., & Wang, J. (2022). Application for ecological restoration of contaminated soil: Phytoremediation. International Journal of Environmental Research and Public Health, 19, 13124. https://doi.org/10.3390/ijerph192013124

    Article  Google Scholar 

  • Taati, A., Salehi, M. H., Mohammadi, J., Mohajer, R., & Díez, S. (2020). Pollution assessment and spatial distribution of trace elements in soils of Arak industrial area, Iran: Implications for human health. Environmental Research, 187, 109577. https://doi.org/10.1016/j.envres.2020.109577

    Article  CAS  Google Scholar 

  • Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., & Chen, A. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, 701, 134751. https://doi.org/10.1016/j.scitotenv.2019.134751

    Article  CAS  Google Scholar 

  • Thestorf, K., & Makki, M. (2021). Pseudo-total antimony content in topsoils of the Berlin Metropolitan Area. Journal of Soils and Sediments, 21, 2102–2117. https://doi.org/10.1007/s11368-020-02742-9

    Article  CAS  Google Scholar 

  • Tomno, R. M., Nzeve, J. K., Mailu, S. N., Shitanda, D., & Waswa, F. (2020). Heavy metal contamination of water, soil and vegetables in urban streams in Machakos municipality, Kenya. Scientific African, 9, e00539. https://doi.org/10.1016/j.sciaf.2020.e00539

    Article  Google Scholar 

  • Turhan, S., Garad, A. M. K., Hancerliogullari, A., Kurnaz, A., Goren, E., Duran, C., & Aydın, A. (2020). Ecological assessment of heavy metals in soil around a coal-fired thermal power plant in Turkey. Environmental Earth Sciences, 79, 1–15. https://doi.org/10.1007/s12665-020-8864-1

    Article  CAS  Google Scholar 

  • USEPA. (1989). Risk assessment guidance for superfund. Human health evaluation manual (Part A), Vol. 1. United States Environmental Protection Agency, Washington, USA (EPA/540/1–89/002).

  • USEPA. (2004). Risk Assessment Guidance for Superfund. Human health evaluation manual (Part E, upplemental guidance for dermal risk assessment), Vol. 1. United States Environmental Protection Agency, Washington, USA (OSWER 9285.7–02 EP).

  • USEPA. (2011). Exposure factors handbook: National Center for Environmental Assessment Office of Research and Development, United States Environmental Protection Agency, Washington, USA 20460. (EPA/600/R-09/052F).

  • Usharani, K. V., Roopashree, K. M., & Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 8, 1256–1267.

    Google Scholar 

  • Varol, M., Gündüz, K., & Sünbul, M. R. (2021). Pollution status, potential sources and health risk assessment of arsenic and trace metals in agricultural soils: A case study in Malatya province, Turkey. Environmental Research, 202, 111806. https://doi.org/10.1016/j.envres.2021.111806

    Article  CAS  Google Scholar 

  • Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, I. M., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., … Young, I. M. (2016). Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone Journal, 15, 1–57. https://doi.org/10.2136/vzj2015.09.0131

    Article  CAS  Google Scholar 

  • Vogel, H. J., Balseiro-Romero, M., Kravchenko, A., Otten, W., Pot, V., Schlüter, S., & Baveye, P. C. (2022). A holistic perspective on soil architecture is needed as a key to soil functions. European Journal of Soil Science, 73, e13152. https://doi.org/10.1111/ejss.13152

    Article  Google Scholar 

  • Wang, Y., Guo, G., Zhang, D., & Lei, M. (2021). An integrated method for source apportionment of heavy metal (loid) s in agricultural soils and model uncertainty analysis. Environmental Pollution, 276, 116666. https://doi.org/10.1016/j.envpol.2021.116666

    Article  CAS  Google Scholar 

  • Wang, Z., Luo, P., Zha, X., Xu, C., Kang, S., Zhou, M., & Wang, Y. (2022). Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. Journal of Cleaner Production, 379, 134043. https://doi.org/10.1016/j.jclepro.2022.134043

    Article  CAS  Google Scholar 

  • Wu, H., Yang, F., Li, H., Li, Q., Zhang, F., Ba, Y., & Zhu, J. (2020). Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. International Journal of Environmental Health Research, 30, 174–186. https://doi.org/10.1080/09603123.2019.1584666

    Article  CAS  Google Scholar 

  • Yan, X., Zhao, W., Yang, X., Liu, C., & Zhou, Y. (2020). Input–output balance of cadmium in typical agriculture soils with historical sewage irrigation in China. Journal of Environmental Management, 276, 111298. https://doi.org/10.1016/j.jenvman.2020.111298

    Article  CAS  Google Scholar 

  • El Youssfi, M., Sifou, A., Ben Aakame, R., Mahnine, N., Arsalane, S., Halim, M., & Zinedine, A. (2022). Trace elements in Foodstuffs from the Mediterranean Basin—Occurrence, risk assessment, regulations, and prevention strategies: A review. Biological Trace Element Research. https://doi.org/10.1007/s12011-022-03334-z

    Article  Google Scholar 

  • Zwolak, A., Sarzynska, M., Szpyrka, E., & Stawarczyk, K. (2019). Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water, Air, and Soil Pollution, 230, 1–9. https://doi.org/10.1007/s11270-019-4221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research facilities provided by Quaid-i-Azam University, Islamabad, Pakistan, to carry out this project are thankfully acknowledged.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MB involved in investigation, methodology, validation, formal analysis, data curation and writing—original draft. MHS involved in visualization, conceptualization, project administration, supervision, resources, funding acquisition, and writing/reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Munir H. Shah.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, M., Shah, M.H. Appraisal of contamination, source identification and health risk assessment of selected metals in the agricultural soil of Chakwal, Pakistan. Environ Geochem Health 45, 8295–8316 (2023). https://doi.org/10.1007/s10653-023-01721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01721-6

Keywords

Navigation