Skip to main content
Log in

Mobility, bioaccessibility, pollution assessment and risk characterization of potentially toxic metals in the urban soil of Lahore, Pakistan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The present study is based on the measurement of potentially toxic metal contents employing various extraction methodologies aimed at the evaluation of their mobility, bioaccessibility and bioavailability in the urban soil (n = 56) of Lahore, Pakistan. Selected metal levels in the soil were quantified using flame atomic absorption spectrometry. On the average basis, aqua regia and glycine extracts revealed comparatively higher contents for most of the metals; average concentrations of Fe, Mn, Zn, Pb, Cu, Cr, Co and Cd were found at 1566, 451.1, 114.8, 52.84, 39.15, 24.82, 12.59 and 3.953 mg/kg in aqua regia extract, while in glycine extract the metal levels were found at 579.6, 174.2, 74.72, 49.74, 19.28, 7.103, 4.692 and 3.357 mg/kg, respectively. However, Cd, Pb, Cu and Zn showed significantly higher mobility and bioavailability in the soil, while Co, Fe and Mn were least mobile/bioavailable. The pollution index was assessed in terms of enrichment factor and modified degree of contamination which revealed severe to significant contamination and anthropogenic enrichment of Cd, Pb, Cu and Zn. Multivariate analysis showed mostly anthropogenic contributions for Zn–Cu–Cr–Pb–Cd. Health risk assessment revealed relatively higher exposure of the metals through ingestion, while only minor contributions were noted for inhalation and dermal contact. Hazard quotient index was within the safe limit (< 1.0) in all soil extractions, thereby indicating no significant non-carcinogenic health risks. The incremental lifetime cancer risk for Cr (4.1E-06) through ingestion was comparatively higher than the safe limit which showed significant lifetime cancer risk to the local population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Acosta, J. A., Faz, A., Martínez-Martínez, S., & Arocena, J. M. (2011). Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain). Applied Geochemistry, 26, 405–414.

    Article  CAS  Google Scholar 

  • Ali, M. U., Liu, G., Yousaf, B., Abbas, Q., Ullah, H., Munir, M. A., & Fu, B. (2017). Pollution characteristics and human health risks of potentially (eco) toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere, 181, 111–121.

    Article  CAS  Google Scholar 

  • Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2005). Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment, 39, 3127–3138.

    Article  CAS  Google Scholar 

  • Alsbou, E. M., & Al-Khashman, O. A. (2018). Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan. Environmental Monitoring and Assessment, 90, 48.

    Article  Google Scholar 

  • Argyraki, A., & Kelepertzis, E. (2014). Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Science of the Total Environment, 482, 366–377.

    Article  Google Scholar 

  • Argyraki, A., Kelepertzis, E., Botsou, F., Paraskevopoulou, V., Katsikis, I., & Trigoni, M. (2018). Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas. Journal of Geochemical Exploration, 187, 201–213.

    Article  CAS  Google Scholar 

  • ASTM. (1998). Standard test method for particle size analysis of soils. American Society for Testing and Materials.

    Google Scholar 

  • Bhat, P. A., ul Shafiq, M., Mir, A. A., & Ahmed, P. (2017). Urban sprawl and its impact on land use/land cover dynamics of Dehradun City, India. International Journal of Sustainable Built Environment, 6, 513–521.

    Article  Google Scholar 

  • Borah, P., Paul, A., Bora, P., Bhattacharyya, P., Karak, T., & Mitra, S. (2017). Assessment of heavy metal pollution in soils around a paper mill using metal fractionation and multivariate analysis. International Journal of Environmental Science and Technology, 14, 2695–2708.

    Article  CAS  Google Scholar 

  • Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., & Fytianos, K. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environmental Geochemistry and Health, 39, 611–634.

    Article  CAS  Google Scholar 

  • Buttafuoco, G., Guagliardi, I., Tarvainen, T., & Jarva, J. (2017). A multivariate approach to study the geochemistry of urban topsoil in the city of Tampere, Finland. Journal of Geochemical Exploration, 181, 191–204.

    Article  CAS  Google Scholar 

  • Chaudhary, S., Banerjee, D. K., Kumar, N., & Yadav, S. (2016). Assessment of bioavailable metals in the sediments of Yamuna flood plain using two different single extraction procedures. Sustainable Environment Research, 26, 28–32.

    Article  CAS  Google Scholar 

  • Chen, H., Lu, X., Li, L. Y., Gao, T., & Chang, Y. (2014). Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Science of the Total Environment, 484, 27–35.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153.

    Article  Google Scholar 

  • Chonokhuu, S., Batbold, C., Chuluunpurev, B., Battsengel, E., Dorjsuren, B., & Byambaa, B. (2019). Contamination and health risk assessment of heavy metals in the soil of major cities in Mongolia. International Journal of Environmental Research and Public Health, 16, 2552.

    Article  CAS  Google Scholar 

  • Christoforidis, A., & Stamatis, N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma, 151, 257–263.

    Article  CAS  Google Scholar 

  • Cicchella, D., Zuzolo, D., Albanese, S., Fedele, L., Tota, I., Guagliardi, I., Thiombane, M., De Vivo, B., & Lima, A. (2020). Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. Journal of Geochemical Exploration, 213, 106519.

    Article  CAS  Google Scholar 

  • Ettler, V., Cihlová, M., Jarošíková, A., Mihaljevič, M., Drahota, P., Kříbek, B., Vaněk, A., Penizek, V., Sracek, O., Klementova, M., Engel, Z., Kamona, F., & Mapani, B. (2019). Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia. Environment International, 124, 205–215.

    Article  CAS  Google Scholar 

  • Franco-Uría, A., López-Mateo, C., Roca, E., & Fernández-Marcos, M. L. (2009). Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. Journal of Hazardous Materials, 165, 1008–1015.

    Article  Google Scholar 

  • Groenenberg, J. E., Römkens, P. F., Zomeren, A. V., Rodrigues, S. M., & Comans, R. N. (2017). Evaluation of the single dilute (0.43 M) nitric acid extraction to determine geochemically reactive elements in soil. Environmental Science & Technology, 51(4), 2246–2253.

    Article  CAS  Google Scholar 

  • Guagliardi, I., Cicchella, D., & Rosa, R. (2012). A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air and Soil Pollution, 223, 5983–5998.

    Article  CAS  Google Scholar 

  • Hasan, M., Kausar, D., Akhter, G., & Shah, M. H. (2018). Evaluation of the mobility and pollution index of selected essential/toxic metals in paddy soil by sequential extraction method. Ecotoxicology and Environmental Safety, 147, 283–291.

    Article  CAS  Google Scholar 

  • Iqbal, J., Saleem, M., & Shah, M. H. (2016). Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Geochemistry, 76, 171–177.

    Article  CAS  Google Scholar 

  • Iqbal, J., & Shah, M. H. (2011). Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. Journal of Hazardous Materials, 192, 887–898.

    Article  CAS  Google Scholar 

  • Iqbal, J., Shah, M. H., & Shaheen, N. (2015). Distribution, source identification and risk assessment of selected metals in sediments from freshwater lake. International Journal of Sediment Research, 30, 241–249.

    Article  Google Scholar 

  • Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment, 185, 729–743.

    Article  CAS  Google Scholar 

  • ISO. (1995). Soil quality: Extraction of trace elements soluble in aqua regia. International Standard Organisation (ISO 11466).

    Google Scholar 

  • Izquierdo, M., De Miguel, E., Ortega, M. F., & Mingot, J. (2015). Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere, 135, 312–318.

    Article  CAS  Google Scholar 

  • Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. International Journal of Environmental Research and Public Health, 13, 663.

    Article  Google Scholar 

  • Karimi, A., Naghizadeh, A., Biglari, H., Peirovi, R., Ghasemi, A., & Zarei, A. (2020). Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environmental Science and Pollution Research, 27, 10317–10327.

    Article  CAS  Google Scholar 

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82–90.

    Article  Google Scholar 

  • Kelepertzis, E., Paraskevopoulou, V., Argyraki, A., Fligos, G., & Chalkiadaki, O. (2015). Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). Journal of Soils and Sediments, 15, 2265–2275.

    Article  CAS  Google Scholar 

  • Khan, S., Rana, T., Gabriel, H. F., & Ullah, M. K. (2008). Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin. Pakistan. Hydrogeology Journal, 16(8), 1635–1654.

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40, 2395–2420.

    Article  CAS  Google Scholar 

  • Lee, P. K., Yu, Y. H., Yun, S. T., & Mayer, B. (2005). Metal contamination and solid phase partitioning of metals in urban roadside sediments. Chemosphere, 60, 672–689.

    Article  CAS  Google Scholar 

  • Li, X., & Feng, L. (2012). Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. Atmospheric Environment, 47, 58–65.

    Article  Google Scholar 

  • Li, X., Lee, S. L., Wong, S. C., Shi, W., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 129, 113–124.

    Article  CAS  Google Scholar 

  • Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., Hall, M. H., Guo, R., Wang, H., Cui, J., & He, X. (2013). Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma, 192, 50–58.

    Article  CAS  Google Scholar 

  • Liu, B., Ai, S., Zhang, W., Huang, D., & Zhang, Y. (2017). Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China. Science of the Total Environment, 609, 822–829.

    Article  CAS  Google Scholar 

  • Lo, I. M. C., & Yang, X. Y. (1999). EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water, Air, & Soil Pollution, 109, 219–236.

    Article  CAS  Google Scholar 

  • Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173, 744–749.

    Article  CAS  Google Scholar 

  • Lu, X., Zhang, X., Li, L. Y., & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, 27–34.

    Article  CAS  Google Scholar 

  • Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X., & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272.

    Article  CAS  Google Scholar 

  • Majeed, S., Rashid, S., Qadir, A., Mackay, C., & Hayat, F. (2018). Spatial patterns of pollutants in water of metropolitan drain in Lahore, Pakistan, using multivariate statistical techniques. Environmental Monitoring and Assessment, 190, 128.

    Article  Google Scholar 

  • Malkoc, S., Yazıcı, B., & Koparal, A. S. (2010). Assessment of the levels of heavy metal pollution in roadside soils of Eskisehir, Turkey. Environmental Toxicology and Chemistry, 29, 2720–2725.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • Minkina, T. M., Mandzhieva, S. S., Burachevskaya, M. V., Bauer, T. V., & Sushkova, S. N. (2018). Method of determining loosely bound compounds of heavy metals in the soil. MethodsX, 5, 217–226.

    Article  Google Scholar 

  • Muhammad, A. M., Zhonghua, T., Sissou, Z., Mohamadi, B., & Ehsan, M. (2016). Analysis of geological structure and anthropological factors affecting arsenic distribution in the Lahore aquifer, Pakistan. Hydrogeology Journal, 24, 1891–1904.

    Article  CAS  Google Scholar 

  • Ngole, V., & Fantke, P. (2017). Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE, 12, e0172517.

    Article  Google Scholar 

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385.

    Article  CAS  Google Scholar 

  • Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis. Royal Society of Chemistry.

    Book  Google Scholar 

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88.

    Article  CAS  Google Scholar 

  • Rivera, M. B., Giráldez, M. I., & Fernández-Caliani, J. C. (2016). Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk? Science of the Total Environment, 560, 254–265.

    Article  Google Scholar 

  • Rizo, O. D., Morell, D. F., López, J. A., Muñoz, J. B., Rodríguez, K. A., & Pino, N. L. (2013). Spatial distribution and contamination assessment of heavy metals in urban topsoils from Las Tunas City, Cuba. Bulletin of Environmental Contamination and Toxicology, 91, 29–35.

    Article  Google Scholar 

  • Rodrigues, S. M., Cruz, N., Carvalho, L., Duarte, A. C., Pereira, E., Boim, A. G., Alleoni, L. R., & Römkens, P. F. (2018). Evaluation of a single extraction test to estimate the human oral bioaccessibility of potentially toxic elements in soils: Towards more robust risk assessment. Science of the Total Environment, 635, 188–202.

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Henriques, B., da Silva, E. F., Pereira, M. E., Duarte, A. C., & Römkens, P. F. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I-The role of key soil properties in the variation of contaminants’ reactivity. Chemosphere, 81, 1549–1559.

    Article  CAS  Google Scholar 

  • Romkens, P. F., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009). Characterization of soil heavy metal pools in paddy fields in Taiwan: Chemical extraction and solid-solution partitioning. Journal of Soils and Sediments, 9, 216–228.

    Article  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., Carpenter, M., & Edwards, D. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Saleem, M., Iqbal, J., Akhter, G., & Shah, M. H. (2018). Fractionation, bioavailability, contamination and environmental risk of heavy metals in the sediments from a freshwater reservoir, Pakistan. Journal of Geochemical Exploration, 184, 199–208.

    Article  CAS  Google Scholar 

  • Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., & Teng, J. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 156, 251–260.

    Article  CAS  Google Scholar 

  • Skrbic, B., & Đurišić-Mladenović, N. (2012). Distribution of heavy elements in urban and rural surface soils: The Novi Sad city and the surrounding settlements, Serbia. Environmental Monitoring and Assessment, 185, 457–471.

    Article  Google Scholar 

  • StatSoft. (1999) STATISTICA for Windows. Computer program manual, StatSoft.

  • Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174, 455–462.

    Article  CAS  Google Scholar 

  • Sutherland, R. A., Tolosa, C. A., Tack, F. M. G., & Verloo, M. G. (2000). Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Archive of Environmental Contamination and Toxicology, 38, 428–438.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133–164.

    Article  Google Scholar 

  • Tóth, G., Hermann, T., Szatmári, G., & Pásztor, L. (2016). Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of the Total Environment, 565, 1054–1062.

    Article  Google Scholar 

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments: An account of the improvement and harmonization of extraction techniques under the auspices of the BCR of the commission of the European communities. International Journal of Environmental and Analytical Chemistry, 51, 135–145.

    Article  CAS  Google Scholar 

  • USEPA. (1989) United States environmental protection agency. Risk assessment guidance for superfund: Volume 1—human health evaluation manual. Part A. interim final.EPA/540/1–89/002. Office of emergency and remedial response.

  • USEPA. (2004). United States environmental protection agency. Risk assessment guidance for superfund volume I: Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). OSWER 9285.7–02 EP.

  • USEPA. (2010). Risk-based concentration table. United States Environmental Protection Agency.

    Google Scholar 

  • Vilavert, L., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2015). Two decades of environmental surveillance in the vicinity of a waste incinerator: Human health risks associated with metals and PCDD/Fs. Archives of Environmental Contamination and Toxicology, 69, 241–253.

    Article  CAS  Google Scholar 

  • Waheed, S., Rahman, A., Khalid, N., & Ahmad, S. (2006). Assessment of air quality of two metropolitan cities in Pakistan: Elemental analysis using INAA and AAS. Radiochimica Acta, 94, 161–166.

    Article  CAS  Google Scholar 

  • Wakelin, S. A., Cavanagh, J. A., Young, S., Gray, C. W., & van Ham, R. J. (2016). Cadmium in New Zealand pasture soils: Toxicity to Rhizobia and white clover. New Zealand Journal of Agricultural Research, 59, 65–78.

    Article  CAS  Google Scholar 

  • Yuan, G. L., Sun, T. H., Han, P., Li, J., & Lang, X. X. (2014). Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. Journal of Geochemical Exploration, 136, 40–47.

    Article  CAS  Google Scholar 

  • Yuangen, Y., Campbell, C. D., Clark, L., Cameron, C. M., & Paterson, E. (2006). Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63, 1942–1952.

    Article  Google Scholar 

  • Yuswir, N. S., Praveena, S. M., Aris, A. Z., Ismail, S. N., & Hashim, Z. (2015). Health risk assessment of heavy metal in urban surface soil (Klang District, Malaysia). Bulletin of Environmental Contamination and Toxicology, 95, 80–89.

    Article  CAS  Google Scholar 

  • Zhang, H., Mao, Z., Huang, K., Wang, X., Cheng, L., Zeng, L., Zhou, Y., & Jing, T. (2019). Multiple exposure pathways and health risk assessment of heavy metal(loid)s for children living in fourth-tier cities in Hubei Province. Environment International, 129, 517–524.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research facilities provided by Quaid-i-Azam University, Islamabad, Pakistan, to carry out this project are thankfully acknowledged.

Funding

This study was partially funded by Higher Education Commission, Government of Pakistan, and Quaid-i-Azam University, Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

YKK was involved in the methodology, investigation, data curation, validation and writing original draft. MT contributed to the software, formal analysis, reviewing and editing. MHS helped in the conceptualization, visualization, resources, formal analysis, supervision, writing/reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Munir H. Shah.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1046 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Y.K., Toqeer, M. & Shah, M.H. Mobility, bioaccessibility, pollution assessment and risk characterization of potentially toxic metals in the urban soil of Lahore, Pakistan. Environ Geochem Health 45, 1391–1412 (2023). https://doi.org/10.1007/s10653-022-01270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01270-4

Keywords

Navigation