Skip to main content

Advertisement

Log in

Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Several anthropogenic activities produce radioactive materials into the environment. According to reports, exposure to high concentrations of radioactive elements such as potassium (40K), uranium (238U and 235U), and thorium (232Th) poses serious health concerns. The scarcity of reviews addressing the occurrence/sources, distribution, and remedial solutions of radioactive contamination in the ecosystems has fueled data collection for this bibliometric survey. In rivers and potable water, reports show that several parts of Europe and Asia have recorded radionuclide concentrations much higher than the permissible level of 1 Bq/L. According to various investigations, activity concentrations of gamma-emitting radioactive elements discovered in soils are higher than the global average crustal values, especially around mining activities. Adsorption technique is the most prevalent remedial method for decontaminating radiochemically polluted sites. However, there is a need to investigate integrated approaches/combination techniques. Although complete radionuclide decontamination utilizing the various technologies is feasible, future research should focus on cost-effectiveness, waste minimization, sustainability, and rapid radionuclide decontamination. Radioactive materials can be harnessed as fuel for nuclear power generation to meet worldwide energy demand. However, proper infrastructure must be put in place to prevent catastrophic disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted with modification from the decay chains at https://en.wikipedia.org/wiki/Decay_chain

Fig. 3

Adapted with permission from Xiao et al. Copyright 2020, Elsevier

Fig. 4

Adapted from Chemical Geology, Newsome et al. 363, 164–184, Copyright 2014 Elsevier

Fig. 5

Reprinted from Chemical Engineering Journal, 353, Huang et al., Unexpected ultrafast and high adsorption of U(VI) and Eu(III) from solution using porous Al2O3 microspheres derived from MIL-53, 157–166, 2018, with permission from Elsevier

Fig. 6

Adapted with slight modification from US Energy Information Administration, 2021

Similar content being viewed by others

References

  • Ababneh, Z. Q., Al-Omari, H., Rasheed, M., Al-Najjar, T., & Ababneh, A. M. (2010). Assessment of gamma-emitting radionuclides in sediment cores from the Gulf of Aqaba, Red Sea. Radiation Protection Dosimetry, 141, 289–298.

    Article  CAS  Google Scholar 

  • Abdel-Sabour, M. F. (2007). Remediation and bioremediation of uranium contaminated soils. Electronic Journal of Environmental, Agricultural and Food Chemistry, 6, 2009–2023.

    CAS  Google Scholar 

  • Abella, M., Molina, M. R., Nikolic-Hughes, I., Hughes, E. W., & Ruderman, M. A. (2019). Background gamma radiation and soil activity measurements in the northern Marshall Islands. Proceedings of the National Academy of Sciences United States of America, 116(31), 15425–15434. https://doi.org/10.1073/pnas.1903421116

    Article  CAS  Google Scholar 

  • Aborisade, M. A., Gbadebo, A. M., Adedeji, O. H., Okeyode, I. C., & Ajayi, O. A. (2018). Excess lifetime cancer risk and radiation pollution hazard indices in rocks and soil of some selected mining sites in Nasarawa State, Nigeria. Aegean Journal of Environmental Sciences, 3, 1–18.

    Google Scholar 

  • Adebiyi, F. M., Ore, O. T., Adeola, A. O., Durodola, S. S., Akeremale, O. F., Olubodun, K. O., & Akeremale, O. K. (2021). Occurrence and remediation of naturally occurring radioactive materials in Nigeria: A review. Environmental Chemistry Letters, 19, 3243–3262.

    Article  CAS  Google Scholar 

  • Adedokun, M. B., Aweda, M. A., Maleka, P. P., Obed, R. I., & Ibitoye, A. Z. (2020). Evaluation of natural radionuclides and associated radiation hazard indices in soil and water from selected vegetable farmlands in Lagos, Nigeria. Environmental Forensics, 23, 301–313.

    Article  Google Scholar 

  • Adegunwa, A. O., Awojide, S. H., & Ore, O. T. (2019). Investigation of radionuclide levels in groundwater around transmission company of Nigeria for environmental impact assessment. Radiation Science and Technology, 4(4), 66.

    Google Scholar 

  • Adeola, A. O., Akingboye, A. S., Ore, O. T., Oluwajana, O. A., Adewole, A. H., Olawade, D. B., & Ogunyele, A. C. (2021a). Crude oil exploration in Africa: Socio-economic implications, environmental impacts, and mitigation strategies. Environment Systems and Decisions, 42, 26–50.

    Article  Google Scholar 

  • Adeola, A. O., de Lange, J., & Forbes, P. B. C. (2021b). Adsorption of antiretroviral drugs, efavirenz and nevirapine from aqueous solution by graphene wool: Kinetic, equilibrium, thermodynamic and computational studies. Applied Surface Science Advances, 6, 100157.

    Article  Google Scholar 

  • Adeola, A. O., & Forbes, P. B. C. (2021). Advances in water treatment technologies for removal of polycyclic aromatic hydrocarbons: Existing concepts, emerging trends, and future prospects. Water Environment Research, 93, 343–395.

    Article  CAS  Google Scholar 

  • Adesiji, N. E., & Ademola, J. A. (2019). Soil-to-cassava plant transfer factor of natural radionuclides on a mining impacted soil in a tropical ecosystem of Nigeria. Journal of Environmental Radioactivity, 201, 1–4.

    Article  CAS  Google Scholar 

  • Adewoyin, O. O., Maxwell, O., Akinwumi, S. A., Adagunodo, T. A., Embong, Z., & Saeed, M. A. (2022). Estimation of activity concentrations of radionuclides and their hazard indices in coastal plain sand region of Ogun state. Scientific Reports, 12, 2108.

    Article  CAS  Google Scholar 

  • Adukpo, O. K., Faanu, A., Lawluvi, H., Tettey-Larbi, L., Emi-Reynolds, G., Darko, E. O., Kansaana, C., Kpeglo, D. O., Awudu, A. R., Glover, E. T., Amoah, P. A., Efa, A. O., Agyemang, L. A., Agyeman, B. K., Kpordzro, R., & Doe, A. I. (2015). Distribution and assessment of radionuclides in sediments, soil and water from the lower basin of river Pra in the Central and Western Regions of Ghana. Journal of Radioanalytical and Nuclear Chemistry, 303, 1679–1685.

    CAS  Google Scholar 

  • Agarwal, R., & Sharma, M. K. (2018). Selective electrochemical separation and recovery of uranium from mixture of uranium(VI) and lanthanide(III) ions in aqueous medium. Inorganic Chemistry, 57, 10984–10992.

    Article  CAS  Google Scholar 

  • Ahmad, N., Jaafar, M., & Alsaffar, M. (2015). Natural radioactivity in virgin and agricultural soil and its environmental implications in Sungai Petani, Kedah, Malaysia. Pollution, 1, 305–313.

    Google Scholar 

  • Ajibola, T. B., Orosun, M. M., Lawal, W. A., Akinyose, F. C., & Salawu, N. B. (2021). Assessment of annual effective dose associated with radon in drinking water from gold and bismuth mining area of Edu, Kwara, North-central Nigeria. Pollution, 7, 231–240.

    CAS  Google Scholar 

  • Akhtar, N., Tufail, M., Ashraf, M., & Mohsin Iqbal, M. (2005). Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan. Radiation Measurements, 39, 11–14.

    Article  CAS  Google Scholar 

  • Akingboye, A. S., Ademila, O., Okpoli, C. C., Oyeshomo, A. V., Ijaleye, R. O., Faruwa, A. R., Adeola, A. O., & Bery, A. A. (2022). Radiogeochemistry, uranium migration, and radiogenic heat of the granite gneisses in parts of the southwestern Basement Complex of Nigeria. Journal of African Earth Sciences, 188, 104469.

    Article  CAS  Google Scholar 

  • Akingboye, A. S., Ogunyele, A. C., Jimoh, A. T., Adaramoye, O. B., Adeola, A. O., & Ajayi, T. (2021). Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: Insights from in situ gamma-ray spectrometry. Environmental Earth Sciences, 80, 228.

    Article  CAS  Google Scholar 

  • Akpanowo, M., Umaru, I., Iyakwari, S., Joshua, E. O., Yusuf, S., & Ekong, G. B. (2020). Determination of natural radioactivity levels and radiological hazards in environmental samples from artisanal mining sites of Anka, North-West Nigeria. Scientific African, 10, e00561.

    Article  Google Scholar 

  • Alnabhani, K., Khan, F., & Yang, M. (2018). Dynamic modeling of TENORM exposure risk during drilling and production. Journal of Petroleum Exploration and Production Technology, 8, 175–188.

    Article  CAS  Google Scholar 

  • Anamika, K., Mehra, R., & Malik, P. (2020). Assessment of radiological impacts of natural radionuclides and radon exhalation rate measured in the soil samples of Himalayan foothills of Uttarakhand, India. Journal of Radioanalytical and Nuclear Chemistry, 323, 263–274.

    Article  CAS  Google Scholar 

  • Arıman, S., & Gümüş, H. (2018). Radioactivity levels and health risks due to radionuclides in the soil and sediment of mid-Black Sea: Kızılırmak Deltas-Turkey. Radiochimica Acta, 106, 927–937.

    Article  Google Scholar 

  • Arora, N. K. (2018). Bioremediation: A green approach for restoration of polluted ecosystems. Environmental Sustainability, 1, 305–307.

    Article  Google Scholar 

  • Asgharizadeh, F., Ghannadi, M., Samani, A. B., Meftahi, M., Shalibayk, M., Sahafipour, S. A., & Gooya, E. S. (2013). Natural radioactivity in surface soil samples from dwelling areas in Tehran city, Iran. Radiation Protection Dosimetry, 156, 376–382.

    Article  CAS  Google Scholar 

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 180.

    Article  Google Scholar 

  • Baeza, A., Salas, A., Guillén, J., Muñoz-Serrano, A., Ontalba-Salamanca, M. Á., & Jiménez-Ramos, M. C. (2017). Removal naturally occurring radionuclides from drinking water using a filter specifically designed for Drinking Water Treatment Plants. Chemosphere, 167, 107–113.

    Article  CAS  Google Scholar 

  • Bangotra, P., Mehra, R., Kaur, K., & Jakhu, R. (2016). Study of natural radioactivity (226Ra, 232Th and 40K) in soil samples for the assessment of average effective dose and radiation hazards. Radiation Protection Dosimetry, 171, 277–281.

    Article  CAS  Google Scholar 

  • Benedik, L., & Jeran, Z. (2012). Radiological of natural and mineral drinking waters in Slovenia. Radiation Protection Dosimetry, 151, 306–313.

    Article  CAS  Google Scholar 

  • Benedik, L., Rovan, L., Klemenčič, H., Gantar, I., & Prosen, H. (2015). Natural radioactivity in tap waters from the private wells in the surroundings of the former Žirovski Vrh uranium mine and the age-dependent dose assessment. Environmental Science and Pollution Research, 22, 12062–12072.

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., & Puls, R. W. (2000). Treatment of inorganic contaminants using permeable reactive barriers11Disclaimer: The U. S. Environment Protection Agency through its Office of Research and Development partially funded and collaborated in the research described here under assistance agreement number CR-823017 to the University of Waterloo. It has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred. Mention of trade names or commercial products does not constitute endorsement or recommendation. Journal of Contaminant Hydrology, 45, 123–137.

    Article  CAS  Google Scholar 

  • Bodunrin, J. O., Ajayi, O. S., & Oke, J. A. (2021). Human exposure levels to ionizing radiation in Agbara Industrial Estate: An impact of Industrial activities in Nigeria. Environmental Monitoring and Assessment, 193, 34.

    Article  CAS  Google Scholar 

  • Brook, B. W., Alonso, A., Meneley, D. A., Misak, J., Blees, T., & van Erp, J. B. (2014). Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Materials and Technologies, 1–2, 8–16.

    Article  Google Scholar 

  • Brown, V. J. (2014). Radionuclides in fracking wastewater: Managing a toxic blend. Environmental Health Perspectives, 122, A50–A55.

    Article  Google Scholar 

  • Bugai, D. A. (2014). Groundwater contamination following the chernobyl accident: Overview of monitoring data, assessment of radiological risks and analysis of remedial measures. In IAEA TM conference on groundwater contamination following Fukushima accident, Vienna, Austria.

  • Cameselle, C., & Gouveia, S. (2019). Physicochemical methods for the remediation of radionuclide contaminated sites. In D. K. Gupta & A. Voronina (Eds.), Remediation measures for radioactively contaminated areas (pp. 31–49). Springer.

    Google Scholar 

  • Cameselle, C., & Reddy, K. R. (2012). Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochimica Acta, 86, 10–22.

    Article  CAS  Google Scholar 

  • Canner, A. J., Pepper, S. E., Hayer, M., & Ogden, M. D. (2018). Removal of radionuclides from a HCl steel decontamination stream using chelating ion exchange resins—Initial studies. Progress in Nuclear Energy, 104, 271–279.

    Article  CAS  Google Scholar 

  • Caridi, F., D’Agostino, M., Marguccio, S., Belvedere, A., Belmusto, G., Marcianò, G., Sabatino, G., & Mottese, A. (2016). Radioactivity, granulometric and elemental analysis of river sediments samples from the coast of Calabria, south of Italy. The European Physical Journal plus, 131, 136.

    Article  Google Scholar 

  • Caridi, F., Paladini, G., Venuti, V., Crupi, V., Procopio, S., Belvedere, A., D’Agostino, M., Faggio, G., Grillo, R., Marguccio, S., Messina, G., & Majolino, D. (2021). Radioactivity, metals pollution and mineralogy assessment of a beach stretch from the Ionian Coast of Calabria (Southern Italy). International Journal of Environmental Research and Public Health, 18, 12147.

    Article  CAS  Google Scholar 

  • Castillo, S., de la Rosa, J. D., Sánchez de la Campa, A. M., González-Castanedo, Y., Fernández-Caliani, J. C., Gonzalez, I., & Romero, A. (2013). Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Science of the Total Environment, 449, 363–372.

    Article  CAS  Google Scholar 

  • Celik, N., Damla, N., & Cevik, U. (2010). Gamma ray concentrations in soil and building materials in Ordu, Turkey. Radiation Effects and Defects in Solids, 165, 1–10.

    Article  CAS  Google Scholar 

  • Chao, Y., Liang, C., Yang, Y., Wang, G., Maiti, D., Tian, L., Wang, F., Pan, W., Wu, S., Yang, K., & Liu, Z. (2018). Highly effective radioisotope cancer therapy with a non-therapeutic isotope delivered and sensitized by nanoscale coordination polymers. ACS Nano, 12, 7519–7528.

    Article  CAS  Google Scholar 

  • Chen, C., Zhang, X., Jiang, T., Li, M., Peng, Y., Liu, X., Ye, J., & Hua, Y. (2021). Removal of uranium(VI) from aqueous solution by Mg(OH)2-coated nanoscale zero-valent iron: Reactivity and mechanism. Journal of Environmental Chemical Engineering, 9, 104706.

    Article  CAS  Google Scholar 

  • Chen, D., Zhao, X., & Li, F. (2014). Treatment of low level radioactive wastewater by means of NF process. Nuclear Engineering and Design, 278, 249–254.

    Article  CAS  Google Scholar 

  • Chen, L., Long, C., Wang, D., & Yang, J. (2020). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere, 242, 125112.

    Article  CAS  Google Scholar 

  • Chen, R., Tanaka, H., Kawamoto, T., Wang, J., & Zhang, Y. (2017). Battery-type column for caesium ions separation using electroactive film of copper hexacyanoferrate nanoparticles. Separation and Purification Technology, 173, 44–48.

    Article  CAS  Google Scholar 

  • Coelho, E., Reis, T. A., Cotrim, M., Mullan, T. K., & Corrêa, B. (2020a). Resistant fungi isolated from contaminated uranium mine in Brazil shows a high capacity to uptake uranium from water. Chemosphere, 248, 126068.

    Article  CAS  Google Scholar 

  • Coelho, E., Reis, T. A., Cotrim, M., Rizzutto, M., & Corrêa, B. (2020b). Bioremediation of water contaminated with uranium using Penicillium piscarium. Biotechnology Progress, 36, e30322.

    Article  CAS  Google Scholar 

  • Darwish, D. A. E., Abul-Nasr, K. T. M., & El-Khayatt, A. M. (2015). The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. Journal of Radiation Research and Applied Sciences, 8, 17–25.

    Article  CAS  Google Scholar 

  • Duan, C., Zhang, Y., Li, J., Kang, L., Xie, Y., Qiao, W., Zhu, C., & Luo, H. (2020). Rapid room-temperature preparation of hierarchically porous metal-organic frameworks for efficient uranium removal from aqueous solutions. Nanomaterials, 10, 1539.

    Article  CAS  Google Scholar 

  • Dudu, V. P., Mathuthu, M., & Manjoro, M. (2018). Assessment of heavy metals and radionuclides in dust fallout in the West Rand mining area of South Africa. Clean Air Journal, 28, 42–52.

    Article  Google Scholar 

  • Dushenkov, S. (2003). Trends in phytoremediation of radionuclides. Plant and Soil, 249, 167–175.

    Article  CAS  Google Scholar 

  • El-Gamal, H., Hussien, M. T., & Saleh, E. E. (2019a). Evaluation of natural radioactivity levels in soil and various foodstuffs from Delta Abyan, Yemen. Journal of Radiation Research and Applied Sciences, 12, 226–233.

    Article  Google Scholar 

  • El-Gamal, H., Sefelnasr, A., & Salaheldin, G. (2019). Determination of natural radionuclides for water resources on the west bank of the Nile River, Assiut Governorate, Egypt. Water, 11, 311.

    Article  CAS  Google Scholar 

  • El-Mageed, A. I. A., El-Kamel, A.E.-H., Abbady, A.E.-B., Harb, S., & Saleh, I. I. (2013). Natural radioactivity of ground and hot spring water in some areas in Yemen. Desalination, 321, 28–31.

    Article  CAS  Google Scholar 

  • El-Taher, A., Zakaly, H. M. H., & Elsaman, R. (2018). Environmental implications and spatial distribution of natural radionuclides and heavy metals in sediments from four harbours in the Egyptian Red Sea coast. Applied Radiation and Isotopes, 131, 13–22.

    Article  CAS  Google Scholar 

  • Fang, X., Xu, Z., Luo, Y., Ren, L., & Hua, W. (2016). Removal of radionuclides from laundry wastewater containing organics and suspended solids using inorganic ion exchanger. Procedia Environmental Sciences, 31, 375–381.

    Article  Google Scholar 

  • Feng, M., Zhang, P., Zhou, H. C., & Sharma, V. K. (2018). Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. Chemosphere, 209, 783–800.

    Article  CAS  Google Scholar 

  • Font, J., Casas, M., Forteza, R., Cerda, V., & Garcias, F. (1993). Natural radioactive elements and heavy metals in coal, fly ash and bottom ash from a thermal power plant. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 28, 2061–2073.

    Google Scholar 

  • Fukuda, S. (2005). Chelating agents used for plutonium and uranium removal in radiation emergency medicine. Current Medicinal Chemistry, 12, 2765–2770.

    Article  CAS  Google Scholar 

  • Galanda, D., Mátel, Ľ, Strišovská, J., & Dulanská, S. (2014). Mycoremediation: The study of transfer factor for plutonium and americium uptake from the ground. Journal of Radioanalytical and Nuclear Chemistry, 299, 1411–1416.

    Article  CAS  Google Scholar 

  • Gonçalves, P. N., Damatto, S. R., Leonardo, L., & Souza, J. M. (2021). Natural radionuclides in soil profiles and sediment cores from Jundiaí reservoir, state of Sao Paulo-Brazil. Brazilian Journal of Radiation Sciences, 9, 18.

    Article  Google Scholar 

  • Gouma, S., Fragoeiro, S., Bastos, A. C., & Magan, N. (2014). 13—Bacterial and fungal bioremediation strategies. In S. Das (Ed.), Microbial biodegradation and bioremediation (pp. 301–323). Elsevier.

    Chapter  Google Scholar 

  • Hannah, L. (2022). Chapter 21—Mitigation: Reducing greenhouse gas emissions, sinks, and solutions. In L. Hannah (Ed.), Climate change biology (3rd ed., pp. 439–472). Academic Press.

    Chapter  Google Scholar 

  • Hassan, N., Ishikawa, T., Hosoda, M., Sorimachi, A., Tokonami, S., Fukushi, M., & Sahoo, S. (2010). Assessment of the natural radioactivity using two techniques for the measurement of radionuclide concentration in building materials used in Japan. Journal of Radioanalytical and Nuclear Chemistry, 283, 15–21.

    Article  CAS  Google Scholar 

  • He, S., Yang, Z., Cui, X., Zhang, X., & Niu, X. (2020). Fabrication of the novel Ag-doped SnS2@InVO4 composite with high adsorption-photocatalysis for the removal of uranium (VI). Chemosphere, 260, 127548.

    Article  CAS  Google Scholar 

  • Hong, G. H., Hamilton, T. F., Baskaran, M., & Kenna, T. C. (2012). Applications of anthropogenic radionuclides as tracers to investigate marine environmental processes. In M. Baskaran (Ed.), Handbook of environmental isotope geochemistry (Vol. I, pp. 367–394). Berlin: Springer.

    Chapter  Google Scholar 

  • Hossain, F. (2020). Natural and anthropogenic radionuclides in water and wastewater: Sources, treatments and recoveries. Journal of Environmental Radioactivity, 225, 106423.

    Article  CAS  Google Scholar 

  • Hu, X., Wang, Y., Yang, J. O., Li, Y., Wu, P., Zhang, H., Yuan, D., Liu, Y., Wu, Z., & Liu, Z. (2020). Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions. Frontiers of Chemical Science and Engineering, 14, 1029–1038.

    Article  CAS  Google Scholar 

  • Huang, S., Pang, H., Li, L., Jiang, S., Wen, T., Zhuang, L., Hu, B., & Wang, X. (2018). Unexpected ultrafast and high adsorption of U(VI) and Eu(III) from solution using porous Al2O3 microspheres derived from MIL-53. Chemical Engineering Journal, 353, 157–166.

    Article  CAS  Google Scholar 

  • Huy, N. Q., Hien, P. D., Luyen, T. V., Hoang, D. V., Hiep, H. T., Quang, N. H., Long, N. Q., Nhan, D. D., Binh, N. T., Hai, P. S., & Ngo, N. T. (2012). Natural radioactivity and external dose assessment of surface soils in Vietnam. Radiation Protection Dosimetry, 151, 522–531.

    Article  CAS  Google Scholar 

  • IAEA, International Atomic Energy Agency. (2019). Nuclear power reactors in the world. Reference Data Series No. 2, Vienna, Austria. Retrieved July 28, 2022 from https://www.iaea.org/publications/13552/nuclear-power-reactors-in-the-world

  • IAEA, International Atomic Energy Agency. (2022b). New IAEA report presents global overview of radioactive waste and spent fuel management. Last updated [21 Jan 2022]. Retrieved August 1, 2022 from https://www.iaea.org/newscenter/news/new-iaea-report-presents-global-overview-of-radioactive-waste-and-spent-fuel-management

  • IAEA, International Atomic Energy Agency. (2022a). What is nuclear energy? The science of nuclear power. Last updated [8 Feb 2022]. Retrieved February, 16 2022aa from https://www.iaea.org/newscenter/news/what-is-nuclear-energy-the-science-of-nuclear-power

  • Ibigbami, T. B., Adeola, A. O., Olawade, D. B., Ore, O. T., Isaac, B. O., & Sunkanmi, A. A. (2022). Pristine and activated bentonite for toxic metal removal from wastewater. Water Practice and Technology, 17, 784–797.

    Article  Google Scholar 

  • Ibikunle, S. B., Arogunjo, A. M., & Ajayi, O. S. (2019). Characterization of radiation dose and soil-to-plant transfer factor of natural radionuclides in some cities from south-western Nigeria and its effect on man. Scientific African, 3, e00062.

    Article  Google Scholar 

  • Ilori, A. O., & Chetty, N. (2020). Soil-to-crop transfer of natural radionuclides in farm soil of South Africa. Environmental Monitoring and Assessment, 192, 775.

    Article  CAS  Google Scholar 

  • Iwetan, C. N., Fuwape, I. A., Aiyesanmi, A. F., & Ayorinde, T. T. (2019). Assessment of radiological parameters of river water and sediment in some oil producing communities of delta state of Nigeria. Environmental Forensics, 20, 251–264.

    Article  Google Scholar 

  • Janković, M. M., Todorović, D. J., Todorović, N. A., & Nikolov, J. (2012). Natural radionuclides in drinking waters in Serbia. Applied Radiation and Isotopes, 70, 2703–2710.

    Article  Google Scholar 

  • Jasaitis, D., Klima, V., Pečiulienė, M., Vasiliauskienė, V., & Konstantinova, M. (2020). Comparative assessment of radiation background due to natural and artificial radionuclides in soil in specific areas on the Territories of State of Washington (USA) and Lithuania. Water, Air, & Soil Pollution, 231, 347.

    Article  CAS  Google Scholar 

  • Jeon, J. (2019). Review of therapeutic applications of radiolabeled functional nanomaterials. International Journal of Molecular Sciences, 20, 2323.

    Article  CAS  Google Scholar 

  • Jibiri, N. N., & Okeyode, I. C. (2012). Evaluation of radiological hazards in the sediments of Ogun river, South-Western Nigeria. Radiation Physics and Chemistry, 81, 103–112.

    Article  CAS  Google Scholar 

  • Kang, T.-W., Park, W.-P., Han, Y.-U., Bong, K. M., & Kim, K. (2020). Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: Importance of soil properties. Journal of Radioanalytical and Nuclear Chemistry, 323, 1113–1124.

    Article  CAS  Google Scholar 

  • Kapanadze, K., Magalashvili, A., & Imnadze, P. (2019). Distribution of natural radionuclides in the soils and assessment of radiation hazards in the Khrami Late Variscan crystal massif (Georgia). Heliyon, 5, e01377.

    Article  Google Scholar 

  • Kesäniemi, J., Jernfors, T., Lavrinienko, A., Kivisaari, K., Kiljunen, M., Mappes, T., & Watts, P. C. (2019). Exposure to environmental radionuclides is associated with altered metabolic and immunity pathways in a wild rodent. Molecular Ecology, 28, 4620–4635.

    Article  Google Scholar 

  • Khan, N. T. (2017). Radioactivity: An introduction to mysterious science. Journal of Physical Chemistry & Biophysics, 7(254), 2161–2398.

    Google Scholar 

  • Khan, N., Kalair, E., Abas, N., Kalair, A. R., & Kalair, A. (2019). Energy transition from molecules to atoms and photons. Engineering Science and Technology, an International Journal, 22, 185–214.

    Article  Google Scholar 

  • Khandaker, M. U., Jojo, P. J., & Kassim, H. A. (2012). Determination of primordial radionuclides in natural samples using HPGe gamma-ray spectrometry. APCBEE Procedia, 1, 187–192.

    Article  Google Scholar 

  • Khandaker, M. U., Nasir, N. L. M., Zakirin, N. S., Kassim, H. A., Asaduzzaman, K., Bradley, D. A., Zulkifli, M. Y., & Hayyan, A. (2017). Radiation dose to the Malaysian populace via the consumption of bottled mineral water. Radiation Physics and Chemistry, 140, 173–179.

    Article  Google Scholar 

  • Kim, G.-N., Kim, S.-S., Park, H.-M., Kim, W.-S., Moon, J.-K., & Hyeon, J.-H. (2012). Development of complex electrokinetic decontamination method for soil contaminated with uranium. Electrochimica Acta, 86, 49–56.

    Article  CAS  Google Scholar 

  • Kim, K.-W., Baek, Y.-J., Lee, K.-Y., Chung, D.-Y., & Moon, J.-K. (2016). Treatment of radioactive waste seawater by coagulation–flocculation method using ferric hydroxide and poly acrylamide. Journal of Nuclear Science and Technology, 53, 439–450.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Kim, S.-O., Lee, C.-W., Lee, M.-H., & Kim, K.-W. (2003). Electrokinetic processing for the removal of radionuclides in soils. Separation Science and Technology, 38, 2137–2163.

    Article  CAS  Google Scholar 

  • Kim, K.-W., Shon, W.-J., Oh, M.-K., Yang, D., Foster, R. I., & Lee, K.-Y. (2019). Evaluation of dynamic behavior of coagulation–flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater. Nuclear Engineering and Technology, 51, 738–745.

    Article  CAS  Google Scholar 

  • Kpeglo, D. O., Mantero, J., Darko, E. O., Emi-Reynolds, G., Akaho, E. H. K., Faanu, A., & Garcia-Tenorio, R. (2014). Radiological exposure assessment from soil, underground and surface water in communities along the coast of a shallow water offshore oilfield in Ghana. Radiation Protection Dosimetry, 163, 341–352.

    Article  Google Scholar 

  • Kumar, A., Rout, S., Pulhani, V., & Kumar, A. V. (2020). A review on distribution coefficient (Kd) of some selected radionuclides in soil/sediment over the last three decades. Journal of Radioanalytical and Nuclear Chemistry, 323, 13–26.

    Article  CAS  Google Scholar 

  • Kumar, P., Kumar, B., & Singh, D. (2022). Chapter 11—Radioactive waste management. In D. Yadav, P. Kumar, P. Singh, & D. A. Vallero (Eds.), Hazardous waste management (pp. 289–301). Elsevier.

    Chapter  Google Scholar 

  • Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-situ remediation technologies for environmental pollutants: A critical perspective. In P. de Voogt (Ed.), Reviews of environmental contamination and toxicology (Vol. 236, pp. 117–192). Springer.

    Google Scholar 

  • Kuppusamy, S., Thavamani, P., Megharaj, M., & Naidu, R. (2015). Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environmental Technology & Innovation, 4, 17–28.

    Article  Google Scholar 

  • L’Annunziata, M. F. (2016). Radioactivity: Introduction and history, from the quantum to quarks. Elsevier.

    Google Scholar 

  • Lack, J. G., Chaudhuri, S.K., Kelly, S. D., Kemner, K. M., O'Connor, S. M., Coates, J. D. (2002). Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). Applied and Environmental Microbiology, 68, 2704–2710.

  • Landa, E. R., Reimnitz, E., Beals, D. M., Pochkowski, J. M., Winn, W. G., & Rigor, I. (1998). Transport of 137Cs and 239,240Pu with ice-rafted debris in the Arctic Ocean. Arctic, 51, 27–39.

    Article  Google Scholar 

  • Lee, K.-Y., Lee, S.-H., Lee, J. E., & Lee, S.-Y. (2019). Biosorption of radioactive cesium from contaminated water by microalgae Haematococcus pluvialis and Chlorella vulgaris. Journal of Environmental Management, 233, 83–88.

    Article  CAS  Google Scholar 

  • Lee, S. Y., Jung, K.-H., Lee, J. E., Lee, K. A., Lee, S.-H., Lee, J. Y., Lee, J. K., Jeong, J. T., & Lee, S.-Y. (2014). Photosynthetic biomineralization of radioactive Sr via microalgal CO2 absorption. Bioresource Technology, 172, 449–452.

    Article  CAS  Google Scholar 

  • Lee, S., Kim, Y., Park, J., Shon, H. K., & Hong, S. (2018). Treatment of medical radioactive liquid waste using Forward Osmosis (FO) membrane process. Journal of Membrane Science, 556, 238–247.

    Article  CAS  Google Scholar 

  • Li, P., Zhun, B., Wang, X., Liao, P., Wang, G., Wang, L., Guo, Y., Zhang, W. (2017). Highly efficient interception and precipitation of Uranium(VI) from aqueous solution by iron-electrocoagulation combined with cooperative chelation by organic ligands. Environmental Science & Technology, 51, 14368–14378.

  • Li, P., Wang, J., Wang, Y., Liang, J., He, B., Pan, D., Fan, Q., & Wang, X. (2019). Photoconversion of U(VI) by TiO2: An efficient strategy for seawater uranium extraction. Chemical Engineering Journal, 365, 231–241.

    Article  CAS  Google Scholar 

  • Li, P., Zhun, B., Wang, X., Liao, P., Wang, G., Wang, L., Guo, Y., Zhang, W. (2017). Highly efficient interception and precipitation of Uranium(VI) from aqueous solution by iron-electrocoagulation combined with cooperative chelation by organic ligands. Environmental Science & Technology, 51, 14368–14378.

  • Liao, J., & Zhang, Y. (2020). Effective removal of uranium from aqueous solution by using novel sustainable porous Al2O3 materials derived from different precursors of aluminum. Inorganic Chemistry Frontiers, 7, 765–776.

    Article  CAS  Google Scholar 

  • Lide, D. R. (2010). CRC handbook of chemistry and physics (81st ed., p. 10e220). CRC Press.

    Google Scholar 

  • Lingamdinne, L. P., Choi, Y.-L., Kim, I.-S., Yang, J.-K., Koduru, J. R., & Chang, Y.-Y. (2017). Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. Journal of Hazardous Materials, 326, 145–156.

    Article  CAS  Google Scholar 

  • Liu, M., Dong, F., Kang, W., Sun, S., Wei, H., Zhang, W., Nie, X., Guo, Y., Huang, T., & Liu, Y. (2014). Biosorption of strontium from simulated nuclear wastewater by Scenedesmus spinosus under culture conditions: Adsorption and bioaccumulation processes and models. International Journal of Environmental Research and Public Health, 11, 6099–6118.

    Article  CAS  Google Scholar 

  • Liu, S., Wang, Z., Lu, Y., Li, H., Chen, X., Wei, G., Wu, T., Maguire, D.-J., Ye, G., & Chen, J. (2021). Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent. Applied Catalysis B: Environmental, 282, 119523.

    Article  CAS  Google Scholar 

  • Liu, T., Yuan, J., Zhang, B., Liu, W., Lin, L., Meng, Y., Yin, S., Liu, C., & Luan, F. (2019). Removal and recovery of uranium from groundwater using direct electrochemical reduction method: performance and implications. Environmental Science & Technology, 53, 14612–14619.

    Article  CAS  Google Scholar 

  • Liu, X., Du, P., Pan, W., Dang, C., Qian, T., Liu, H., Liu, W., & Zhao, D. (2018). Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Applied Catalysis B: Environmental, 231, 11–22.

    Article  CAS  Google Scholar 

  • Liu, X., & Lin, W. (2018). Natural radioactivity in the beach sand and soil along the coastline of Guangxi Province, China. Marine Pollution Bulletin, 135, 446–450.

    Article  CAS  Google Scholar 

  • Liu, X., Wu, J., Liu, C., & Wang, J. (2017). Removal of cobalt ions from aqueous solution by forward osmosis. Separation and Purification Technology, 177, 8–20.

    Article  CAS  Google Scholar 

  • Ma, D., Wei, J., Zhao, Y., Chen, Y., & Tang, S. (2020). The removal of uranium using novel temperature sensitive urea-formaldehyde resin: Adsorption and fast regeneration. Science of the Total Environment, 735, 139399.

    Article  CAS  Google Scholar 

  • Mahamood, K. N., Divya, P. V., Vineethkumar, V., & Prakash, V. (2020). Dynamics of radionuclides activity, radon exhalation rate of soil and assessment of radiological parameters in the coastal regions of Kerala, India. Journal of Radioanalytical and Nuclear Chemistry, 324, 949–961.

    Article  CAS  Google Scholar 

  • Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11, 843–872.

    Article  CAS  Google Scholar 

  • Masok, F. B., Masiteng, P. L., Mavunda, R. D., Maleka, P. P., & Winkler, H. (2018). Measurement of radioactivity concentration in soil samples around phosphate rock storage facility in Richards Bay, South Africa. Journal of Radiation Research and Applied Sciences, 11, 29–36.

    Article  CAS  Google Scholar 

  • McElroy, E., Lawter, A. R., Appriou, D., Smith, F., Bowden, M., Qafoku, O., Kovarik, L., Szecsody, J. E., Truex, M. J., & Qafoku, N. P. (2020). Iodate interactions with calcite: Implications for natural attenuation. Environmental Earth Sciences, 79, 306.

    Article  CAS  Google Scholar 

  • Menshikova, E., Perevoshchikov, R., Belkin, P., & Blinov, S. (2021). Concentrations of natural radionuclides (40K, 226Ra, 232Th) at the potash salts deposit. Journal of Ecological Engineering, 22, 179–187.

    Article  Google Scholar 

  • Mihalik, J., Tlustoš, P., & Száková, J. (2011). The influence of citric acid on mobility of radium and metals accompanying uranium phytoextraction. Plant, Soil and Environment, 57(11), 526–531.

    Article  CAS  Google Scholar 

  • Mihara, F., Shuseki, Y., Tamura, S., Ui, K., Kikuchi, K., Yasumori, A., Komaba, S., Fukunishi, M., Kogo, Y., Idemoto, Y., & Takeuchi, K. (2019). Removal of strontium from aqueous solutions using scallop shell powder. Journal of the Ceramic Society of Japan, 127(2), 111–116.

  • Mohamed Johar, S., & Embong, Z. (2015). The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia. Radiation Protection Dosimetry, 167, 160–164.

    Article  CAS  Google Scholar 

  • Momoh, A. H., Ochalla, I., Ocheni, D. O., Ajibade, D. R., & Bello, A. I. (2020). Radiological status of drinking water sources around a coal mining site in Kogi State, North Central Nigeria. Journal of Applied Sciences and Environmental Management, 24, 903–908.

    Article  Google Scholar 

  • Muth, C. J., Aalto, P., Mylläri, F., Rönkkö, T., & Harsia, P. (2021). Chapter 2—Globally and locally applicable technologies to accelerate electrification. In P. Aalto (Ed.), Electrification (pp. 25–55). Academic Press.

    Chapter  Google Scholar 

  • Nariyan, E., Sillanpää, M., & Wolkersdorfer, C. (2018). Uranium removal from Pyhäsalmi/Finland mine water by batch electrocoagulation and optimization with the response surface methodology. Separation and Purification Technology, 193, 386–397.

    Article  CAS  Google Scholar 

  • Newsome, L., Morris, K., & Lloyd, J. R. (2014). The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology, 363, 164–184.

    Article  CAS  Google Scholar 

  • Noor, T., Javid, A., Hussain, A., Bukhari, S. M., Ali, W., Akmal, M., & Hussain, S. M. (2020). Chapter 14—Types, sources and management of urban wastes. In P. Verma, P. Singh, R. Singh, & A. S. Raghubanshi (Eds.), Urban ecology (pp. 239–263). Elsevier.

    Chapter  Google Scholar 

  • Novikov, A. P. (2010). Migration and concentration of artificial radionuclides in environmental objects. Geochemistry International, 48, 1263–1387.

    Article  Google Scholar 

  • Ojovan, M. I., & Lee, W. E. (2014). 4—Naturally occurring radionuclides. In M. I. Ojovan & W. E. Lee (Eds.), An introduction to nuclear waste immobilisation (2nd ed., pp. 31–39). Elsevier.

    Chapter  Google Scholar 

  • Ore, O. T., & Adeola, A. O. (2021). Toxic metals in oil sands: Review of human health implications, environmental impact, and potential remediation using membrane-based approach. Energy, Ecology and Environment, 6, 81–91.

    Article  Google Scholar 

  • Osman, A. A. A., Salih, I., Shaddad, I. A., El Din, S., Siddeeg, M. B., Eltayeb, H., Idriss, H., Hamza, W., & Yousif, E. H. (2008). Investigation of natural radioactivity levels in water around Kadugli, Sudan. Applied Radiation and Isotopes, 66, 1650–1653.

    Article  CAS  Google Scholar 

  • Ouyang, B., Renock, D. J., Ajemigbitse, M. A., Van Sice, K., Warner, N. R., Landis, J. D., & Feng, X. (2019). Radium in hydraulic fracturing wastewater: Distribution in suspended solids and implications to its treatment by sulfate co-precipitation. Environmental Science: Processes & Impacts, 21, 339–351.

    CAS  Google Scholar 

  • Ozdemir, S., Kılınc, E., Yalcin, M. S., Soylak, M., & Sen, F. (2020). A new magnetized thermophilic bacteria to preconcentrate uranium and thorium from environmental samples through magnetic solid-phase extraction. Journal of Pharmaceutical and Biomedical Analysis, 186, 113315.

    Article  CAS  Google Scholar 

  • Papadopoulos, A., Christofides, G., Koroneos, A., & Stoulos, S. (2014). Natural radioactivity distribution and gamma radiation exposure of beach sands from Sithonia Peninsula. Open Geosciences, 6, 229–242.

    Article  Google Scholar 

  • Papaefthymiou, H., Gkaragkouni, A., Papatheodorou, G., & Geraga, M. (2017). Radionuclide activities and elemental concentrations in sediments from a polluted marine environment (Saronikos Gulf-Greece). Journal of Radioanalytical and Nuclear Chemistry, 314, 1841–1852.

    Article  CAS  Google Scholar 

  • Patel, A. K., Singhania, R. R., Albarico, F. P. J. B., Pandey, A., Chen, C.-W., & Dong, C.-D. (2022). Organic wastes bioremediation and its changing prospects. Science of the Total Environment, 824, 153889.

    Article  CAS  Google Scholar 

  • Petrangeli, G. (2020). Chapter 1—Introduction. In G. Petrangeli (Ed.), Nuclear safety (2nd ed., pp. 1–17). Butterworth-Heinemann.

    Google Scholar 

  • Pioro, I., & Duffey, R. (2019). 3—Current status of electricity generation in the world and future of nuclear power industry. In T. M. Letcher (Ed.), Managing global warming (pp. 67–114). Academic Press.

    Chapter  Google Scholar 

  • Psaltou, S., & Zouboulis, A. (2020). Catalytic ozonation and membrane contactors—A review concerning fouling occurrence and pollutant removal. Water, 12, 2964.

    Article  CAS  Google Scholar 

  • Pucci, C., Martinelli, C., & Ciofani, G. (2019). Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 13, 961.

    Article  Google Scholar 

  • Rae, I. B., Pap, S., Svobodova, D., & Gibb, S. W. (2019). Comparison of sustainable biosorbents and ion-exchange resins to remove Sr2+ from simulant nuclear wastewater: Batch, dynamic and mechanism studies. Science of the Total Environment, 650, 2411–2422.

    Article  CAS  Google Scholar 

  • Rahmat, M. A., Ismail, A. F., Rodzi, N. D., Aziman, E. S., Idris, W. M. R., & Lihan, T. (2022). Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry. Nuclear Engineering and Technology, 54, 2230–2243.

    Article  CAS  Google Scholar 

  • Ramadan, R. S., Dawood, Y. H., Yehia, M. M., & Gad, A. (2022). Environmental and health impact of current uranium mining activities in southwestern Sinai, Egypt. Environmental Earth Sciences, 81, 213.

    Article  CAS  Google Scholar 

  • Rani, A., Mittal, S., Mehra, R., & Ramola, R. C. (2015). Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India. Applied Radiation and Isotopes, 101, 122–126.

    Article  CAS  Google Scholar 

  • Ravisankar, R., Sivakumar, S., Chandrasekaran, A., Prince Prakash Jebakumar, J., Vijayalakshmi, I., Vijayagopal, P., & Venkatraman, B. (2014). Spatial distribution of gamma radioactivity levels and radiological hazard indices in the East Coastal sediments of Tamilnadu, India with statistical approach. Radiation Physics and Chemistry, 103, 89–98.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Ala, P. R., Sharma, S., & Kumar, S. N. (2006). Enhanced electrokinetic remediation of contaminated manufactured gas plant soil. Engineering Geology, 85, 132–146.

    Article  Google Scholar 

  • Reddy, K. R., & Cameselle, C. (2009). Electrochemical remediation technologies for polluted soils, sediments and groundwater. Wiley.

    Book  Google Scholar 

  • Reddy, P. C. O., Raju, K. S., Sravani, K., Sekhar, A. C., & Reddy, M. K. (2019). Transgenic plants for remediation of radionuclides. In: Transgenic plant technology for remediation of toxic metals and metalloids. London: Academic Press, pp 187–237. https://doi.org/10.1016/B978-0-12-814389-6.00010-9

  • Ribeiro, F. C. A., Lauria, D. D. C., Silva, J. I. R., Lima, E. S. A., Amaral Sobrinho, N. M. B. D., & Pérez, D. V. (2018). Baseline and quality reference values for natural radionuclides in soils of Rio de Janeiro State, Brazil. Revista Brasileira de Ciência do Solo, 42, 1–15.

    Article  Google Scholar 

  • Rogers, H., Bowers, J., & Gates-Anderson, D. (2012). An isotope dilution–precipitation process for removing radioactive cesium from wastewater. Journal of Hazardous Materials, 243, 124–129.

    Article  CAS  Google Scholar 

  • Rosenfeld, P. E., & Feng, L. G. H. (2011). 1—Definition of hazardous waste. In P. E. Rosenfeld & L. G. H. Feng (Eds.), Risks of hazardous wastes (pp. 1–10). William Andrew Publishing.

    Google Scholar 

  • Rout, T. K., Sengupta, D. K., Kaur, G., & Kumar, S. (2006). Enhanced removal of dissolved metal ions in radioactive effluents by flocculation. International Journal of Mineral Processing, 80, 215–222.

    Article  CAS  Google Scholar 

  • Rypkema, H. A. (2018). Chapter 2.1—Environmental chemistry, renewable energy, and global policy. In B. Török & T. Dransfield (Eds.), Green chemistry (pp. 19–47). Elsevier.

    Chapter  Google Scholar 

  • Saichek, R. E., & Reddy, K. R. (2005). Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface environments. Journal of Environmental Engineering and Science, 4, 327–339.

    Article  CAS  Google Scholar 

  • Sakamoto, S., & Kawase, Y. (2016). Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. Journal of Environmental Radioactivity, 165, 151–158.

    Article  CAS  Google Scholar 

  • Salbu, B., & Lind, O. C. (2020). Analytical techniques for charactering radioactive particles deposited in the environment. Journal of Environmental Radioactivity, 211, 106078.

    Article  CAS  Google Scholar 

  • Sancho, M., Arnal, J. M., Verdú, G., Lora, J., & Villaescusa, J. I. (2006). Ultrafiltration and reverse osmosis performance in the treatment of radioimmunoassay liquid wastes. Desalination, 201, 207–215.

    Article  CAS  Google Scholar 

  • Sanganyado, E. (2021). Policies and regulations for emerging pollutants in freshwater ecosystems: Challenges and opportunities. In T. Dalu & N. T. Tavengwa (Eds.), Emerging freshwater pollutants. Elsevier.

  • Semerikov, S., Alokhina, T., Gudzenko, V., Chukharev, S., Sakhno, S., Striuk, A., Iatsyshyn, A., Klimov, S., Osadchyi, V., Vakaliuk, T., Nechypurenko, P., Bondarenko, O., & Danylchuk, H. (2021). Distribution of radionuclides in modern sediments of the rivers flowing into the Dnieper-Bug Estuary. In E3S Web of conferences 280.

  • Shadrin, N., Mirzoeva, N., Sidorov, I., Korotkov, A., & Anufriieva, E. (2020). Natural radionuclides in bottom sediments of the saline lakes. What factors determine their concentration? Environmental Earth Sciences, 79, 168.

    Article  CAS  Google Scholar 

  • Sharma, P. R., Sharma, S. K., Borges, W., Chen, H., & Hsiao, B. S. (2020). Remediation of UO22+ from water by nitro-oxidized carboxycellulose nanofibers: Performance and mechanism. Contaminants in our water: identification and remediation methods. American Chemical Society (pp. 269–283).

  • Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied Water Science, 7, 1043–1067.

    Article  CAS  Google Scholar 

  • Sharma, S., Singh, B., & Manchanda, V. K. (2015). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946–962.

    Article  CAS  Google Scholar 

  • Sheng, G., Dong, H., & Li, Y. (2012). Characterization of diatomite and its application for the retention of radiocobalt: Role of environmental parameters. Journal of Environmental Radioactivity, 113, 108–115.

    Article  CAS  Google Scholar 

  • Shukla, S. K., Hariharan, S., & Rao, T. S. (2020). Uranium bioremediation by acid phosphatase activity of Staphylococcus aureus biofilms: Can a foe turn a friend? Journal of Hazardous Materials, 384, 121316.

    Article  CAS  Google Scholar 

  • Sia, J., Szmyd, R., Hau, E., & Gee, H. E. (2020). Molecular mechanisms of radiation-induced cancer cell death: A primer. Front Cell Dev Biol, 8, 41. https://doi.org/10.3389/fcell.2020.00041

    Article  Google Scholar 

  • Siegel, J. A., & Sparks, R. B. (2002). Radioactivity appearing at landfills in household trash of nuclear medicine patients: Much ado about nothing? Health Physics, 82, 367–372.

    Article  CAS  Google Scholar 

  • Siegel, M. D., & Bryan, C. R. (2014). 11.6—Radioactivity, geochemistry, and health. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 191–256). Elsevier.

    Chapter  Google Scholar 

  • Song, B., Zeng, G., Gong, J., Liang, J., Xu, P., Liu, Z., Zhang, Y., Zhang, C., Cheng, M., Liu, Y., Ye, S., Yi, H., & Ren, X. (2017). Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environment International, 105, 43–55.

    Article  CAS  Google Scholar 

  • Song, S., Zhang, S., Huang, S., Zhang, R., Yin, L., Hu, Y., Wen, T., Zhuang, L., Hu, B., & Wang, X. (2019a). A novel multi-shelled Fe3O4@MnOx hollow microspheres for immobilizing U(VI) and Eu(III). Chemical Engineering Journal, 355, 697–709.

    Article  CAS  Google Scholar 

  • Song, W., Wang, X., Sun, Y., Hayat, T., & Wang, X. (2019b). Bioaccumulation and transformation of U(VI) by sporangiospores of Mucor circinelloides. Chemical Engineering Journal, 362, 81–88.

    Article  CAS  Google Scholar 

  • Song, W., Wang, X., Wang, Q., Shao, D., & Wang, X. (2015). Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Physical Chemistry Chemical Physics, 17, 398–406.

    Article  CAS  Google Scholar 

  • Soudek, P., Tykva, R., & Vaněk, T. (2004). Laboratory analyses of 137Cs uptake by sunflower, reed and poplar. Chemosphere, 55, 1081–1087.

    Article  CAS  Google Scholar 

  • Strand, P., Jefferies, N., Koma, Y., & Plyer, J. (2022). Methodological developments and practice in characterisation of unconventional and legacy waste. Journal of Radiological Protection, 42, 020501.

    Article  Google Scholar 

  • Sukatis, F. F., & Aris, A. Z. (2021). Metal−organic frameworks based adsorbents for aquatic pollutants removal: Metal−organic frameworks for environmental remediation (pp. 155–170). American Chemical Society.

    Book  Google Scholar 

  • Tochaikul, G., Phattanasub, A., Khemkham, P., Saengthamthawee, K., Danthanavat, N., & Moonkum, N. (2022). Radioactive waste treatment technology: A review. Kerntechnik.

    Google Scholar 

  • U.S Energy information Administration. (2021). Nuclear power plants. Last updated April 6, 2021 from https://www.eia.gov/energyexplained/nuclear/nuclear-power-plants.php

  • Uhunamure, S. E., Agyekum, E. B., Durowoju, O. S., Shale, K., Nethengwe, N. S., Ekosse, G.-I.E., & Adebayo, T. S. (2021). Appraisal of nuclear energy as an alternative option in South Africa’s energy scenario: A multicriteria analysis. Applied Sciences, 11, 10349.

    Article  CAS  Google Scholar 

  • UNSCEAR, United Nation Scientific Committee on the Effects of Atomic Radiation. (2008). Sources and effects of ionizing radiation. United Nations. Report of the United Nations Scientific Committee on the Effect of Atomic Radiation to General Assembly, New York, USA. https://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_E.pdf

  • UNSCEAR, United Nation Scientific Committee on the Effects of Atomic Radiation. (2016). Developments since the 2013 UNSCEAR report on the levels and effects of radiation exposure due to the nuclear accident following the great east-Japan earthquake and tsunami. https://www.unscear.org/unscear/en/publications/Fukushima_WP2016.html

  • Valdovinos, V., Monroy-Guzman, F., & Bustos, E. (2014). Treatment methods for radioactive wastes and its electrochemical applications. In M. C. Hernandez-Soriano (Ed.), Environmental risk assessment of soil contamination. IntechOpen. https://doi.org/10.5772/57445.

  • Valković, V. (2019). Chapter 2—Technologically modified exposure to natural radiation. In V. Valković (Ed.), Radioactivity in the environment (2nd ed., pp. 31–62). Elsevier.

    Chapter  Google Scholar 

  • van Hullebusch, E. D., Lens, P. N. L., & Tabak, H. H. (2005). Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Reviews in Environmental Science and Bio/technology, 4, 185–212.

    Article  Google Scholar 

  • Vijay, A., Khandelwal, A., Chhabra, M., & Vincent, T. (2020). Microbial fuel cell for simultaneous removal of uranium (VI) and nitrate. Chemical Engineering Journal, 388, 124157.

    Article  CAS  Google Scholar 

  • Vives i Batlle, J. (2012). Radioactivity in the marine environment. In R. A. Meyers (Ed.), Encyclopedia of sustainability science and technology (pp. 8387–8425). Springer.

    Chapter  Google Scholar 

  • Wang, S., Wang, L., Li, Z., Zhang, P., Du, K., Yuan, L., Ning, S., Wei, Y., & Shi, W. (2021). Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. Journal of Hazardous Materials, 408, 124949.

    Article  CAS  Google Scholar 

  • Wei, H., Dong, F., Chen, M., Zhang, W., He, M., & Liu, M. (2020). Removal of uranium by biogenetic jarosite coupled with photoinduced reduction in the presence of oxalic acid: A low-cost remediation technology. Journal of Radioanalytical and Nuclear Chemistry, 324, 715–729.

    Article  CAS  Google Scholar 

  • Wen, S., Sun, Y., Liu, R., Chen, L., Wang, J., Peng, S., Ma, C., Yuan, Y., Gong, W., & Wang, N. (2021). Supramolecularly poly(amidoxime)-loaded macroporous resin for fast uranium recovery from seawater and uranium-containing wastewater. ACS Applied Materials & Interfaces, 13, 3246–3258.

    Article  CAS  Google Scholar 

  • Wen, X., Li, F., & Zhao, X. (2016). Filtering of low-level radioactive wastewater by means of vacuum membrane distillation. Nuclear Technology, 194, 379–386.

    Article  Google Scholar 

  • WHO: World Health Organization. (2016). Ionizing radiation, health effects and protective measures. World Health Organization.

    Google Scholar 

  • WNA, World Nuclear Association. (2020). Naturally-occurring radioactive materials (NORM). Updated April 2021. Retrieved February 16, 2022 from https://www.world-nuclear.org/informationlibrary/safety-and-security/radiation-and-health/naturally-occurring-adioactive-materials-norm.aspx

  • Wu, L., Zhang, G., Wang, Q., Hou, L., & Gu, P. (2014). Removal of strontium from liquid waste using a hydraulic pellet co-precipitation microfiltration (HPC-MF) process. Desalination, 349, 31–38.

    Article  CAS  Google Scholar 

  • Wuana, R. A., Okieimen, F. E., & Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science & Technology, 7, 485–496.

    Article  CAS  Google Scholar 

  • Xiao, J., Pang, Z., Zhou, S., Chu, L., Rong, L., Liu, Y., Li, J., & Tian, L. (2020a). The mechanism of acid-washed zero-valent iron/activated carbon as permeable reactive barrier enhanced electrokinetic remediation of uranium-contaminated soil. Separation and Purification Technology, 244, 116667.

    Article  CAS  Google Scholar 

  • Xiao, J., Zhou, S., Chu, L., Liu, Y., Li, J., Zhang, J., & Tian, L. (2020b). Electrokinetic remediation of uranium(VI)-contaminated red soil using composite electrolyte of citric acid and ferric chloride. Environmental Science and Pollution Research, 27, 4478–4488.

    Article  CAS  Google Scholar 

  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.

    Article  Google Scholar 

  • Yao, W., Wang, X., Liang, Y., Yu, S., Gu, P., Sun, Y., Xu, C., Chen, J., Hayat, T., Alsaedi, A., & Wang, X. (2018). Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: Batch and EXAFS studies. Chemical Engineering Journal, 332, 775–786.

    Article  CAS  Google Scholar 

  • Yasmin, S., Barua, B. S., Uddin Khandaker, M., Kamal, M., Abdur Rashid, M., Abdul Sani, S. F., Ahmed, H., Nikouravan, B., & Bradley, D. A. (2018). The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication. Results in Physics, 8, 1268–1274.

    Article  Google Scholar 

  • Yong, G., Jun, Z., Guanghui, Z., Dong, Z., Weiwen, C., Guoqi, Y., Xuejun, L., Bangzhong, M., Junhui, Z., & Ping, G. (2004). Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process. Separation and Purification Technology, 40, 183–189.

    Article  CAS  Google Scholar 

  • Zakrzewska-Trznadel, G., Harasimowicz, M., & Chmielewski, A. G. (1999). Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation. Journal of Membrane Science, 163, 257–264.

    Article  CAS  Google Scholar 

  • Zhang, Q., Wang, Y., Wang, Z., Zhang, Z., Wang, X., & Yang, Z. (2021a). Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water. Journal of Alloys and Compounds, 852, 156993.

    Article  CAS  Google Scholar 

  • Zhang, W., Dong, Y., Wang, H., Guo, Y., Zeng, H., & Zan, J. (2021b). Removal of uranium from groundwater using zero-valent-iron coated quartz sands. Journal of Radioanalytical and Nuclear Chemistry, 327, 1–12.

    Article  CAS  Google Scholar 

  • Zhang, W., Liu, H., Fan, X., Zhuo, Z., & Guo, Y. (2020). Removal of uranium from aqueous solution by a permeable reactive barrier loaded with hydroxyapatite-coated quartz sand: Implication for groundwater remediation. Geochemistry, 80, 125545.

    Article  CAS  Google Scholar 

  • Zheng, X. Y., Shen, Y. H., Wang, X. Y., & Wang, T. S. (2018). Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Chemosphere, 203, 109–116.

    Article  CAS  Google Scholar 

  • Zhou, P., & Gu, B. (2005). Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH. Environmental Science & Technology, 39, 4435–4440.

    Article  CAS  Google Scholar 

  • Zhu, M., Cai, Y., Liu, S., Fang, M., Tan, X., Liu, X., Kong, M., Xu, W., Mei, H., & Hayat, T. (2019). K2Ti6O13 hybridized graphene oxide: Effective enhancement in photodegradation of RhB and photoreduction of U(VI). Environmental Pollution, 248, 448–455.

    Article  CAS  Google Scholar 

Download references

Funding

There was no external funding for the study.

Author information

Authors and Affiliations

Authors

Contributions

AOA was involved in conceptualization; methodology; writing—original draft; writing—review and editing; supervision; validation; project administration. KOI, KGA, KOO, JFA, KAA, JOI, CO, and JC helped in writing—review and editing; validation.

Corresponding author

Correspondence to A. O. Adeola.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical standards

This article does not contain any studies involving human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeola, A.O., Iwuozor, K.O., Akpomie, K.G. et al. Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review. Environ Geochem Health 45, 2663–2689 (2023). https://doi.org/10.1007/s10653-022-01378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01378-7

Keywords

Navigation