Skip to main content
Log in

A review on distribution coefficient (Kd) of some selected radionuclides in soil/sediment over the last three decades

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This review paper presents the different methods to estimate Kd and subsequent compiles of the Kd data on U, Ra, Th, 137Cs and 60Co in soil/sediment under various aquatic medium based on the extensive literature survey over the last 3-decades (1990–2019). The estimated Kd values show a very wide range and make more difficult to derive generic value. The finding suggests that Kd values are to be estimated for site-specific conditions while assessing the radionuclide transport modeling and risk analysis around the nuclear facilities. Review includes research papers, reports, reviewed papers, dissertations, published compilations and other technical documents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Basta NT, Tabatabai MA (1992) Effect of cropping systems on sorption of metals by soils: III. Competitive sorption. Soil Sci 153:331–337

    CAS  Google Scholar 

  2. United States Environmental Protection Agency (USEPA) (1999). Understanding variation in partition coefficient, Kd, values: Volume I. The Kd model, methods of measurement and application of chemical reaction codes. EPA 402-R-99-04A, prepared for the US Environmental Protection Agency, Washington, DC by Pacific Northwest National Laboratory, Richland,Washington

  3. Sheppard MI, Thibaut GH (1990) Default soil solid/liquid partition coefficients, Kds, for four major soil types: a compendium. Health Phys 59:471–482

    CAS  PubMed  Google Scholar 

  4. Thibault DH, Sheppard MI, Smith PA (1990) A critical compilation and review of default soil solid/liquid partition coefficients, Kd, for use in environmental assessments. Atomic Energy of Canada Limited, AECL-10125

  5. Environmental Modelling for Radiation Safety (EMRAS) (2012). A Summary report of the results of the EMRAS Programme (2003–2007). IAEA-TECDOC-1678

  6. Marumo JT, Suarez AA (1990) The determination of the Cs distribution coefficient of the interim storage soil from ABADIA DE GOIAS, GO, Brazil. Waste Manag 10:111–115

    CAS  Google Scholar 

  7. McKinley IG, Grogan HA (1991) Radionuclide sorption databases for Swiss repository safety assessments. Radiochim Acta 53:415–420

    Google Scholar 

  8. McKinley IG, Scholtis A (1993) Compilation and comparison of radionuclide sorption databases used in recent performance assessments. In: Radionuclide sorption from the safety evaluation perspective. OECD Nuclear Energy Agency, Paris

  9. Hesslein RH (1997) Whole-lake radiotracer movement in fertilized lake basins. Can J Fish Aquat Sci 1:74–82

    Google Scholar 

  10. Mollah AS, Ullah SM (1998) Determination of distribution coefficient of 137Cs and 90Sr in soil from AERE, Savar. Waste Manag 18:287–291

    CAS  Google Scholar 

  11. US Environmental Protection Agency (USEPA) (2004). Understanding variation in partition coefficient Kd, values: Volume III. Review of geochemistry and available Kd values for Americium, Arsenic, Curium, Iodine, Neptunium, Radium and Technetium. EPA402-R-04-002C prepared for the U.S. Environmental Protection Agency, Washington, DC by Pacific Northwest National Laboratory, Richland, Washington

  12. US Environmental Protection Agency (USEPA) (1991). Site characterization for subsurface remediation. EPA/625/4-91/026, Office of research and development, U.S. Environmental Protection Agency, Cincinnati, Ohio

  13. Ivanovich M, Latham AG, Longworth G, Gascoyne M (1992) Applications to radioactive waste disposal studies. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium. Applications to earth, marine and environmental systems. Oxford University Press, Oxford, pp 583–630

    Google Scholar 

  14. Johnson WH, Serkiz SM, Johnson LM, Clark SB (1995) Uranium partitioning under acidic conditions in a sandy soil aquifer. In: Paper presented at the Waste Management Symposium, Tucson, Arizona

  15. Roy WR, Drapac IG, Chou SFJ, Griffin RA (1991) Batch-type procedures for estimating soil adsorption of chemicals. EPA/530-SW-87-006-F, Office of solid waste and emergency response. US Environmental Protection Agency, Washington, DC

  16. Serkiz SM, Johnson WH (1994) Uranium geochemistry in soil and groundwater at the F and H Seepage Basins (U). EPD-SGS-94-307, Westinghouse Savannah River Company, Savannah River Site, Aiken, South Carolina

  17. OECD (2000). OECD guideline 106. Guideline for the testing of chemicals: adsorption–desorption using a batch equilibrium method

  18. American Society for Testing and Materials (ASTM) D4646–03 (2003) Standard test method for 24-h batch-type measurement of contaminant sorption by soils and sediments. ASTM Publications, PA

    Google Scholar 

  19. Oughton D, Børretzen P, Salbu B, Tronstad E (1997) Mobilisation of 137Cs and 90Sr from sediments: potential sources to arctic waters. SciTotal Environ 202:155–165

    CAS  Google Scholar 

  20. Kumar A, Singhal RK, Rout S, Narayanan U, Karpe R, Ravi PM (2013) Adsorption and kinetic behaviour of uranium and thorium in seawater-sediment system. J Radioanal Nucl Chem 295(1):649–656

    CAS  Google Scholar 

  21. Kumar A, Rout S, Mishra MK, Karpe R, Ravi PM, Tripathi RM (2015) Impact of particle size, temperature and humic acid on sorption of uranium in agricultural soils of Punjab. Spring Plus 4:262–269

    Google Scholar 

  22. Kaplan DI, Gervais TL, Krupka KM (1998) Uranium(VI) sorption to sediments under high pH and ionic strength conditions. Radiochim Acta 80:201–211

    CAS  Google Scholar 

  23. Um W, Serne RJ, Bjornstad BN, Schaef HT, Brown CF, LeGore VL, Geiszler KN, Baum, SR, Valenta, MM, Kutnyakov IV, Vickerman TS, Lindberg MJ (2005) Characterization of 200-UP-1 aquifer sediments and results of sorption-desorption tests using spiked uncontaminated groundwater. Pacific Northwest National Laboratory, Richland, Wash PNNL-15502

  24. Serne RJ, Brown CF, Schaef HT, Pierce JE, Lindberg MJ, Wang Z, Gassman P, Catalano J (2002) 300 Area Uranium Leach and Adsorption Project. PNNL-14022, Pacific Northwest National Laboratory, Richland, Washington

  25. Gamerdinger AP, Resch CT, Kaplan DI (1998) Uranium (VI) sorption and transport in unsaturated, subsurface Hanford Site sediments—effect of moisture content and sediment texture. Final Report for Subtask 2b. PNNL- 11975, Pacific Northwest National Laboratory, Richland, Washington

  26. Gamerdinger AP, Kaplan DI, Wellman DM, Serne JN (2001) Two-Region flow and rate-limited sorption of uranium (VI) during Transport in an unsaturated silt loam. Water Resour Res 37:3147–3153

    CAS  Google Scholar 

  27. Gil-García C, Tagami K, Uchida S, Rigol A, Vidal M (2009) New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 3: miscellany of radionuclides (Cd Co, Ni, Zn, I, Se, Sb, Pu, Am and others). J Environ Radioact 100(9):704–715

    PubMed  Google Scholar 

  28. Montavon G, Alhajji E, Grambow B (2006) Study of the interaction of Ni2+and Cs+ on MX-80 bentonite: effect of compaction using the capillary method. Environ Sci Technol 40:4672–4679

    CAS  PubMed  Google Scholar 

  29. Wang XK, Montavon G, Grambow B (2003) A new experimental design to investigate the concentration dependent diffusion of Eu(III) in compacted bentonite. J Radioanal Nucl Chem 257:293–297

    CAS  Google Scholar 

  30. Okamoto A, Idemitsu K, Furuya H, Inagaki Y, Arima T (1999) Distribution coefficients and apparent diffusion coefficients of cesium in compacted bentonites. PP 1091- 1098. In: David JN, Lee JH (eds) Materials research society symposium, 556, Scientific Basis for Nuclear Waste Management, vol 22

  31. Fernandez TR, Vidal M, Rauret G, Rigol A (2005) Laboratory experiments to characterize radionuclide diffusion in soils. In: The 2nd international conference on radioactivity in the environment. Aix-en-Provence, France

  32. Ochs M, Lothenbach B, Wanner H, Sato H, Yui M (2001) An integrated sorption– diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite. J Contam Hydrol 47:283–296

    CAS  PubMed  Google Scholar 

  33. Sheppard S, Jeff L, Barb S (2009) Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp. SKB Rapport R-09-27, ISSN 1402-3091

  34. Environmental Modelling for Radiation Safety (EMRAS) (2008) Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. IAEA-TECDOC

  35. Wauters J, Vidal M, Elsen A, Cremers A (1996) Prediction of solid-liquid distribution coefficients of radiocaesium in soils and sediments. Part two: a new procedure for solid phase speciation of radiocaesium. Appl Geochem 11:595–599

    CAS  Google Scholar 

  36. Syed HS (1999) Comparison studies adsorption of thorium and uranium on pure clay minerals and local Malaysian soil sediments. J Radioanal Nucl Chem 241(1):11–14

    CAS  Google Scholar 

  37. Vandenhove H, van Hees M, Wouters K, Wannijn J (2007) Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration. Environ Pollut 145(2):587–595

    CAS  PubMed  Google Scholar 

  38. Vandenhove H, van Hees M (2007) Predicting radium availability and uptake from soil properties. Chemosphere 69:664–674

    CAS  PubMed  Google Scholar 

  39. Waite TD, Payne TE, Davis JA, Sekine K (1992) Alligators rivers analogue project. Final report volume 13. Uranium sorption. ISBN 0-642-599394 (DOE/HMIP/RR/92/0823, SKI TR 92:20–13)

  40. Payne T, Davis J, Waite T (1996) Uranium adsorption on ferrihydrite-effects of phosphate and humic acid. Radiochim Acta 74:239–244

    CAS  Google Scholar 

  41. McKinley JP, Zachara JM, Smith SC, Turner GD (1995) The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite. Clays Clay Miner 43(5):586–598

    CAS  Google Scholar 

  42. Zachara JM, Ainsworth CC, McKinley JP, Murphy EM, Westall JC, Rao PSC (1992) Subsurface chemistry of organic ligand-radionuclide mixtures. In: Pacific Northwest Laboratory Annual Report for 1991 to the DOE Office of Energy Research Part 2: Environmental Science, PNL-8000 Pt. 2. Pacific Northwest Laboratory, Richland

  43. Serne RJ, Conca JL, LeGore VL, Cantrell KJ, Lindenmeier CW, Campbell JA, Amonette JE, Wood MI (1993) Solid-Waste Leach Characteristics and Contaminant- Sediment Interactions. Volume 1: Batch Leach and Adsorption Tests and Sediment Characterization. PNL-8889, Pacific Northwest Laboratory, Richland, Washington

  44. Serne RJ, Bjornstad BN, Schaef HT, Williams BA, Lanigan DC, Horton DG, Clayton R E, Mitroshkov AV, Legore VL, O’Hara MJ, Brown CF, Parker KE, Kutnyakov IV, Serne JN, Last GV, Smith SC, Lindenmeier CW, Zachara JM, Burke D (2002) Characterization of vadose zone sediment: uncontaminated RCRA borehole core samples and composite samples. PNNL-13757-1, Pacific Northwest National Laboratory, Richland, WA

  45. Erikson RL, Hostetler CJ, Serne RJ, Divine JR, Parkhurst MA (1993) Geochemical factors affecting degradation and environmental fate of depleted uranium penetrators in soil and water. Report No. PNL-8527, Pacific Northwest Nation Laboratory, Richland, WA

  46. Warnecke E, Hollmann A, Tittel G, Brennecke P (1994) Gorleben radionuclide migration experiments: More than 10 years of experience. Fourth International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere. Charleston, SC USA, Dec 12–17, 1993, pp 821–827, R Oldenbourg Verlag, München

  47. Kaplan DI, Serne RJ (1995) Distribution coefficient values describing Iodine, Neptunium, Selenium, Technetium and Uranium sorption to Hanford Sediments. PNL-10379 (Supplement 1), Pacific Northwest Laboratory, Richland, Washington

  48. Kaplan DI, Serne RJ, Owen AT, Conca J, Wietsma TW, Gervais TL (1996) Radionuclide adsorption distribution coefficients measured in Hanford Sediments for the low level waste performance assessment project. PNNL-11485, Pacific Northwest Laboratory, Richland, Washington

  49. Lindenmeier CW, Serne RJ, Conca JL, Owen AT, Wood MI (1995) Solid waste leach characteristics and contaminant-sediment interactions volume 2: Contaminant transport under unsaturated moisture contents. PNL-10722, Pacific Northwest Laboratory, Richland, Washington

  50. Moore WS (2000) Determining coastal mixing rates using radium isotopes. Cont Shelf Res 20:1993–2007

    Google Scholar 

  51. Echevarria G, Sheppard MI, JeanLouis M (2001) Effect of pH on the sorption of uranium in soils. J Environ Radioact 53(2):257–264

    CAS  PubMed  Google Scholar 

  52. International Atomic Energy Agency (IAEA) (2009). Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments. IAEA TECDOC-1616, Vienna

  53. Pandit GG, Mishra S, Maity S, Puranik VD (2011) Estimation of distribution coefficient of uranium and its correlation with soil parameters around uranium mining site. In The New Uranium Mining Boom. Springer, Berlin, pp 557–564

    Google Scholar 

  54. Mishra S, Maity S, Pandit GG (2012) Estimation of distribution coefficients of natural radionuclides in soil around uranium mines and its effect with ionic strength of water. Rad Prot Dosim 152(1–3):229–233

    CAS  Google Scholar 

  55. Mishra S, Sahoo SK, Arae H, Watanabe Y, Mietelski JW (2014) Activity ratio of caesium, strontium and uranium with site specific distribution coefficients in contaminated soil near vicinity of Fukushima Daiichi Nuclear Power Plant. J Chromatogr Sep Tech. https://doi.org/10.4172/2157-7064.1000250

    Article  Google Scholar 

  56. Kumar A, Rout S, Singhal RK, Ravi PM (2013) Thermodynamic parameters of U(VI) sorption onto soils in aquatic systems. Spring Plus 2:530–536

    Google Scholar 

  57. Manoj S, Parimalarenganayaki S, Elango L (2017) Estimation of distribution coefficient of uranium in soil by batch tests. Mater Sci Eng. https://doi.org/10.1088/1757-899X/263/3/032016

    Article  Google Scholar 

  58. Mishra S, Kasara S, Takamasaa A, Veerasamy N, Sahoo SK (2019) Measurement of uranium distribution coefficient and 235U/238U ratio in soils affected by Fukushima dai-ichi nuclear power plant accident. J Environ Radioact 198:36–42

    CAS  PubMed  Google Scholar 

  59. Meier H, Zimmerhacki E, Zeitler G, Menge P (1994) Parameter studies of radionuclide sorption in site-specific sediment/groundwater systems. Radiochim Acta 66(67):277–284

    Google Scholar 

  60. Willett IR, Bond WJ (1995) Sorption of manganese, uranium and radium by highly weathered soils. J Environ Qual 24:834–845

    CAS  Google Scholar 

  61. Moore WS (1996) Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. Geochim et Cosmochim Acta 60(23):4645–4652

    Google Scholar 

  62. Baraniak L, Thieme M, Bernhard G, Nitsche H (1999) Sorption behavior of radium on sandy and clayey sediments of the upper Saxon Elbe River Valley. J Radioanal Nucl Chem 241:511–517

    CAS  Google Scholar 

  63. Sun Y, Torgersen T (2001) Adsorption–desorption reactions and bioturbation transport of 224Ra in marine sediments: a One-Dimensional Model with Applications. Mar Chem 74:227–243

    CAS  Google Scholar 

  64. Tachi Y, Shibutani T, Sato H, Yui M (2001) Experimental and modeling studies on sorption and diffusion of radium in bentonite. J Contamin Hydrol 47:171–186

    CAS  Google Scholar 

  65. Sakamoto Y, Nagao S, Ogawa H, Rao RR (2000) The migration behavior of Np(V) in sandy soil and granite media in the presence of humic substances. Radiochim Acta 88:651–656

    CAS  Google Scholar 

  66. International Atomic Energy Agency (IAEA) (2010). Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. IAEA, Technical Report Series No. 472

  67. Sheppard SC, Sheppard MI, Tait JC, Sanipelli BL (2006) Revision and meta-analysis of selected biosphere parameter values for chlorine, iodine, neptunium, radium, radon and uranium. J Environ Radioact 89:115–137

    CAS  PubMed  Google Scholar 

  68. Smith JT, Bowes MJ, Denison FH (2006) Modelling the dispersion of radionuclides following short duration releases to rivers: part 1. Water and sediment. Sci Total Environ 368:485–501

    CAS  PubMed  Google Scholar 

  69. Beck AJ, Cochran MA (2013) Controls on solid-solution partitioning of radium in saturated marine sands. Mar Chem 156:38–48

    CAS  Google Scholar 

  70. Choppin GR, Pamela JW (1998) The chemistry of actinide behaviour in marine systems. Aquat Geochem 4:77–101

    CAS  Google Scholar 

  71. International Atomic Energy Agency (IAEA) (1985). Sediment Kds and concentration factors for radionuclides in the marine environment. Technical Report Series No 247, Vienna

  72. International Atomic Energy Agency (IAEA) (1994). Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Report Series No 364, Vienna

  73. Sanchez AL, Smolders E, van den Brande K, Merckx R, Wright SM, Naylor C (2002) Predictions of in situ solid/liquid distribution of radiocaesium in soils. J Environ Radioact 63:35–47

    CAS  PubMed  Google Scholar 

  74. Cantrell KJ, Serne RJ, Last GV(2003) Hanford contaminant distribution coefficient database and users guide. Pacific Northwest National Laboratory. PNNL-13895 Rev1

  75. Chang KP, Hsu CN (1993) Basic study of 137Cs sorption on soil. J Nucl Sci Technol 30:1243–1247

    CAS  Google Scholar 

  76. Lima MF, Mazzilli BP (1994) Determination of the distribution coefficients for 137Cs, 60Co and 234Th in the Pinheiros River Sediment-Water. J Radioanal Nucl Chem 177:139–147

    CAS  Google Scholar 

  77. Shimada YSM, Inoue Y (1996) Determination of distribution and transfer coefficients of Sr-90 and Cs-137 based on the environmental monitoring data in Japan. J Atomic Energy Soc Japan 38:230–239

    CAS  Google Scholar 

  78. Pulford ID, Allan RL, Cook GT, MacKenzie AB (1998) Geochemical associations of Sellafield-derived radionuclides in saltmarsh deposits of the Solway Firth. Environ Geochem Health 20:95–101

    CAS  Google Scholar 

  79. Christensen GC, Bergan TDS, Berge D, Bækken T (1998) A comparison of seawater and fresh water in a study of sediment-water exchange of radionuclides. Radiat Prot Dosim 75(1–4):107–109

    CAS  Google Scholar 

  80. Carroll J, Boisson F, Teyssie JL, King SE, Krosshavnc M, Carroll ML, Fowler SW, Povinec PP, Baxter MS (1999) Distribution coeffcients (Kd’s) for use in risk assessment models of the Kara Sea. Appl Radiat Isot 51:121–129

    CAS  PubMed  Google Scholar 

  81. Kamei-Ishikawa N, Uchida S, Tagami K (2008) Distribution coefficients for 85Sr and 137Cs in Japanese agricultural soils and their correlations with soil properties. J Radioanal Nucl Chem 277:433–439

    CAS  Google Scholar 

  82. International Atomic Energy Agency (IAEA) (2005). Worldwide marine radioactivity studies (WOMARS) Radionuclide levels in oceans and sea. IAEA-TECDOC-1429

  83. Grogan KP, Robert AF, Kaplan D, DeVol TA, Coates JT (2010) Distributions of radionuclide sorption coefficients (Kd) in sub-surface sediments and the implications for transport calculations. J Environ Radioact 101:847–853

    CAS  PubMed  Google Scholar 

  84. Krupka KM, Kaplan DI, Whelan G, Serne RJ, Mattigod SV (1998) Understanding Variation in Partition Coefficient, Kd, Values. EPA 402-R-99e004A. In: Review of Geochemistry and Available Kd Values, for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium and Uranium, vol. II. Office of Air and Radiation, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC

  85. Sanial V, Buesseler Ken O, Charette Matthew A, Nagao Seiya (2017) Unexpected source of Fukushima-derived radiocesium to the coastal ocean of Japan. PNAS 114(42):11092–11096. https://doi.org/10.1073/pnas.1708659114

    Article  CAS  PubMed  Google Scholar 

  86. Wang XK, Dong WM, Wang G, Tao ZY (2002) Sorption and desorption of Co(II) on alumina: mechanisms and effect of humic substances. Appl Radiat Isotopes 56(6):765–771

    CAS  Google Scholar 

  87. Deutsch WJ (1997) Groundwater geochemistry: fundamentals and applications to contamination. Lewis Publishers, New York

    Google Scholar 

Download references

Acknowledgements

Authors sincerely acknowledge the guidance, help and constant encouragement provided by Dr. K. S. Pradeepkumar, Associate Director, H, S & E Group, BARC, Mumbai. Authors are also thankful to all staffs working in ESLs, NPP, India for helping in generating the site specific Kd values of radionuclides of interest in soil/sediments around the Indian Nuclear Power Plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Rout, S., Pulhani, V. et al. A review on distribution coefficient (Kd) of some selected radionuclides in soil/sediment over the last three decades. J Radioanal Nucl Chem 323, 13–26 (2020). https://doi.org/10.1007/s10967-019-06930-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06930-x

Keywords

Navigation