Skip to main content

Advertisement

Log in

Heavy metal(loid)s contaminations in soils of Pakistan: a review for the evaluation of human and ecological risks assessment and spatial distribution

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Heavy metal(loid)s (HM) contaminations in the soil poses threats to the human and ecological community due to their bioaccumulation, toxicity, and persistent nature in the ecosystem. This review was designed to know about the HM contamination in soils, ecological risk, distribution, and potential health risks. Soil HM concentrations published in the last 30 years were collected from Springer, Science Direct, Willey, Mendeley, ResearchGate, Google Scholar, etc. HM concentrations were used for the geo-accumulation index (Igeo), contamination factor, as well as integrated indices such as spatial distribution of ecological risk index. Similarly, the Igeo pattern was observed in Sindh > Baluchistan > Punjab > Khyber Pakhtunkhwa > Gilgit-Baltistan > Islamabad. Moreover, the high ecological risk mean values ranged (160 < ERI < 320) due to cadmium (Cd) was exhibited in the Punjab and Khyber Pakhtunkhwa provinces and Islamabad. Non-carcinogenic risk like hazard quotient was found higher for children (1.59) of Punjab due to arsenic (As) ingestion, whereas the lower risk was observed due to Zn (2.5E−08) for adults of Punjab province via inhalation pathway. Similarly, the health index (HI) from exposure to As (1.61) in soil was higher than the rest of the HM. Moreover, cancerous risk was determined and found in the tolerable range (10–4–10–6). This study recommended that HM contaminants in the soil need to be monitored on regular basis, especially in Baluchistan, Gilgit-Baltistan, and Sindh provinces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Abbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Zia-ur-Rehman, M., et al. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 148, 825–833.

  • Abbas, T., Akmal, M., Aziz, I., Iqbal, M., & Ahmed, H. (2021). Risk assessment and GIS-based mapping of heavy metals in the secondary rock deposits derived soils of Islamabad, Pakistan. Environmental Earth Sciences, 80, 1–9.

    Article  Google Scholar 

  • Aguilera, A., Bautista, F., Gutiérrez-Ruiz, M., Ceniceros-Gómez, A. E., Cejudo, R., & Goguitchaichvili, A. (2021). Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environmental Monitoring and Assessment, 193, 1–16.

    Google Scholar 

  • Ali, I., Khan, I. U., Khan, M. J., Sardar, T., Deeba, F., Hussain, H., Ullah, K., Khan, Q. U., Khan, M., & Khan, M. D. (2020). Exploring geochemical assessment and spatial distribution of heavy metals in soils of Southern KP, Pakistan: Employing multivariate analysis. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1804894

    Article  Google Scholar 

  • Ali, L., Rashid, A., Khattak, S. A., Zeb, M., & Jehan, S. (2019). Geochemical control of potential toxic elements (PTEs), associated risk exposure and source apportionment of agricultural soil in Southern Chitral, Pakistan. Microchemical Journal, 147, 516–523.

    Article  CAS  Google Scholar 

  • Ali, S. M., & Malik, R. N. (2011). Spatial distribution of metals in top soils of Islamabad City, Pakistan. Environmental Monitoring and Assessment, 172, 1–16.

    Article  CAS  Google Scholar 

  • Ali, S. M., Pervaiz, A., Afzal, B., Hamid, N., & Yasmin, A. (2014). Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city. Journal of King Saud University-Science, 26, 59–65.

    Article  Google Scholar 

  • Amin, Nu., Hussain, A., Alamzeb, S., & Begum, S. (2013). Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chemistry, 136, 1515–1523.

    Article  Google Scholar 

  • Arain, M., Kazi, T., Baig, J., Jamali, M., Afridi, H., Shah, A., Jalbani, N., & Sarfraz, R. (2009). Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: Estimation of daily dietary intake. Food and Chemical Toxicology, 47, 242–248.

    Article  CAS  Google Scholar 

  • Archer, D. R., & Fowler, H. J. (2004). Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrology and Earth System Sciences, 8, 47–61.

    Article  Google Scholar 

  • Arif, M. (2000). Zincian, manganiferous chrome spinel from the Swat valley ophiolite, NW Pakistan. Geological Bulletin University of Peshawar, 33, 103–110.

    Google Scholar 

  • Arif, M., & Jan, M. Q. (1993). Chemistry of chromite and associated phases from the Shangla ultramafic body in the Indus suture zone of Pakistan. Geological Society, London, Special Publications, 74, 101–112.

    Article  Google Scholar 

  • Ashfaq, M., Ali, S., & Hanif, M. A. (2009). Bioaccumulation of cobalt in silkworm (Bombyx mori L.) in relation to mulberry, soil and wastewater metal concentrations. Process Biochemistry, 44(10), 1179–1184.

  • Assunção, A. G. L., Cakmak, I., Clemens, S., González-Guerrero, M., Nawrocki, A., & Thomine, S. (2022). Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. Journal of Experimental Botany, 73(6), 1789–1799.

    Article  Google Scholar 

  • Baghaie, A. H., & Fereydoni, M. (2019). The potential risk of heavy metals on human health due to the daily consumption of vegetables. Environmental Health Engineering and Management Journal, 6, 11–16.

    Article  CAS  Google Scholar 

  • Bai, J., & Zhao, X. (2020). Ecological and human health risks of heavy metals in shooting range soils: A meta assessment from China. Toxics, 8, 32.

    Article  CAS  Google Scholar 

  • Bakht, F., Khan, S., Muhammad, S., & Khan, M. A. (2022). Heavy metal bioavailability in the earthworm-assisted soils of different land types of Pakistan. Arabian Journal of Geosciences, 15, 1–8.

    Article  Google Scholar 

  • Batjes, N. H., & Bridges, E. M. (1993). Soil vulnerability to pollution in Europe. Soil Use and Management, 9, 25–29.

    Article  Google Scholar 

  • Bawwab, M., Qutob, A., Al Khatib, M., Malassa, H., Shawahna, A., & Qutob, M. (2022). Evaluation of heavy metal concentrations in soil and edible vegetables grown in compost from unknown sources in Al-Jiftlik, Palestine. Journal of Environmental Protection, 13, 112–125.

    Article  CAS  Google Scholar 

  • Bilgrami, S. (1969). Geology and chemical mineralogy of the Zhob valley chromite deposits, West Pakistan. American Mineralogist: Journal of Earth and Planetary Materials, 54, 134–148.

    CAS  Google Scholar 

  • Bilgrami, S., & Howie, R. (1960). The mineralogy and petrology of a rodingite dike, Hindubagh, Pakistan. American Mineralogist, 45, 791–801.

    CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153.

    Article  Google Scholar 

  • Cruzado-Tafur, E., Torró, L., Bierla, K., Szpunar, J., & Tauler, E. (2021). Heavy metal contents in soils and native flora inventory at mining environmental liabilities in the Peruvian Andes. Journal of South American Earth Sciences, 106, 103107.

    Article  CAS  Google Scholar 

  • Dhandhayuthapani, O. (2022). An evaluation of chelation therapy for heavy metal toxicity and enhancement of detoxification using natural alternatives with special reference to developing countries. International Journal of Research in Engineering, Science and Management, 5, 205–210.

    Google Scholar 

  • Doabi, S. A., Karami, M., Afyuni, M., & Yeganeh, M. (2018). Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province. Iran. Ecotoxicology and Environmental Safety, 163, 153–164.

    Article  CAS  Google Scholar 

  • Drobnik, T., Greiner, L., Keller, A., & Grêt-Regamey, A. (2018). Soil quality indicators–from soil functions to ecosystem services. Ecological Indicators, 94, 151–169.

    Article  Google Scholar 

  • Efe, R., Ozturk, M., Atalay, I., Askarova, M. A., & Mussagaliyeva, A. N. (2014). The ecological situation in contaminated areas of oil and gas exploration in Atyrau Region. Procedia-social and behavioral sciences.In 3rd International Geography Symposium, GEOMED2013, 10–13 June 2013, Antalya, Turkey 120, 455–459.

  • Faiz, Y., Tufail, M., Javed, M. T., & Chaudhry, M. (2009). Road dust pollution of Cd, Cu, Ni, Pb and Zn along islamabad expressway, Pakistan. Microchemical Journal, 92, 186–192.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, 4501–4512.

    Article  CAS  Google Scholar 

  • Fontes, M. P. F., & Gomes, P. C. (2003). Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Applied Geochemistry, 18, 795–804.

    Article  CAS  Google Scholar 

  • Gu, W., Guo, J., Bai, J., Dong, B., Hu, J., Zhuang, X., Zhang, C., & Shih, K. (2022). Co-pyrolysis of sewage sludge and Ca (H2PO4) 2: Heavy metal stabilization, mechanism, and toxic leaching. Journal of Environmental Management, 305, 114292.

    Article  CAS  Google Scholar 

  • Guadie, A., Yesigat, A., Gatew, S., Worku, A., Liu, W., Ajibade, F. O., & Wang, A. (2021). Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch. Ethiopia. Science of the Total Environment, 761, 143302.

    Article  CAS  Google Scholar 

  • Gul, N., Shah, M. T., Khan, S., & Muhammad, S. (2014). Quantification of the heavy metals in the agricultural soils of Mardan District, Khyber Pakhtunkhwa, Pakistan. Journal of Global Innovation in Agricultural and Social Sciences, 2, 158–162.

    Article  Google Scholar 

  • Gul, S., Naz, A., Khan, A., Nisa, S., & Irshad, M. (2016). Phytoavailability and leachability of heavy metals from contaminated soil treated with composted livestock manure. Soil and Sediment Contamination: An International Journal, 25, 181–194.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Research, 14, 975–1001.

    Google Scholar 

  • Håkanson, L., Nilsson, Å., & Andersson, T. (1988). Mercury in fish in Swedish lakes. Environmental Pollution, 49, 145–162.

    Article  Google Scholar 

  • Hamad, S. H., Schauer, J. J., Shafer, M. M., Abd Al-Rheem, E., Skaar, P. S., Heo, J., & Tejedor-Tejedor, I. (2014). Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq. Science of the Total Environment, 494, 39–48.

    Article  Google Scholar 

  • Hanif, N., Eqani, S. A. M. A. S., Ali, S. M., Cincinelli, A., Ali, N., Katsoyiannis, I. A., Tanveer, Z. I., & Bokhari, H. (2016). Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan. Journal of Geochemical Exploration, 165, 62–70.

    Article  CAS  Google Scholar 

  • Hao, M., Zuo, Q., Li, J., Shi, S., Li, B., & Zhao, X. (2022). A comprehensive exploration on distribution, risk assessment, and source quantification of heavy metals in the multi-media environment from Shaying River Basin. China. Ecotoxicology and Environmental Safety, 231, 113190.

    Article  CAS  Google Scholar 

  • Haq, M. U., Khattak, R. A., Puno, H. K., Saif, M. S., Memon, K. S., & Sial N. B. (2005). Heavy metals accumulation in potentially contaminated soils of NWFP. Asian Journal of Plant Sciences, 4(2), 159–163.

  • HC. (2004). Federal Contaminated Site Risk Assessment in Canada-Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors. C. H. Canada. Ottawa - Ontario: Health Canada, Minister of Health: 69.

  • Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2. 5 in Nanjing. China. Atmospheric Environment, 57, 146–152.

    Article  CAS  Google Scholar 

  • Iqbal, J., & Shah, M. H. (2011). Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. Journal of Hazardous Materials, 192, 887–898.

    Article  CAS  Google Scholar 

  • Iqbal, M., Ahmed, S., Rehman, W., Menaa, F., & Ullah, A. (2020). Heavy metal levels in vegetables cultivated in pakistan soil irrigated with untreated wastewater: Preliminary results. Sustainability, 12, 8891.

    Article  CAS  Google Scholar 

  • Iram, S., Ahmad, I., & Stuben, D. O. R. I. S. (2009). Analysis of mines and contaminated agricultural soil samples for fungal diversity and tolerance to heavy metals. Pakistan Journal of Botany, 41(2), 885–895.

  • Izhar, S., Goel, A., Chakraborty, A., & Gupta, T. (2016). Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere, 146, 582–590.

    Article  CAS  Google Scholar 

  • Jadoon, S., Muhammad, S., Hilal, Z., Ali, M., Khan, S., & Khattak, N. U. (2020a). Spatial distribution of potentially toxic elements in urban soils of Abbottabad city, (N Pakistan): Evaluation for potential risk. Microchemical Journal, 153, 104489.

    Article  CAS  Google Scholar 

  • Jadoon, S., Muhammad, S., Hilal, Z., Ali, M., Khan, S., & Khattak, N. U. (2020b). Spatial distribution of potentially toxic elements in urban soils of Abbottabad city,(N Pakistan): Evaluation for potential risk. Microchemical Journal, 153, 104489.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., & Memon, A. R. (2007). Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. Journal of Agronomy and Crop Science, 193, 218–228.

    Article  CAS  Google Scholar 

  • Jan, F. A., Ishaq, M., Khan, S., Ihsanullah, I., Ahmad, I., & Shakirullah, M. (2010). A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). Journal of Hazardous Materials, 179, 612–621.

    Article  CAS  Google Scholar 

  • Jayamurali, D., Varier, K. M., Liu, W., Raman, J., Ben-David, Y., Shen, X., & Gajendran, B. (2021). An overview of heavy metal toxicity. Metal, Metal Oxides and Metal Sulphides for Biomedical Applications, 323–342.

  • Jehan, S., Khattak, S. A., Muhammad, S., Ahmad, R., Farooq, M., Khan, S., Khan, A., & Ali, L. (2020). Ecological and health risk assessment of heavy metals in the Hattar industrial estate, Pakistan. Toxin Reviews, 39, 68–77.

    Article  Google Scholar 

  • Jiao, X., Teng, Y., Zhan, Y., Wu, J., & Lin, X. (2015). Soil heavy metal pollution and risk assessment in Shenyang industrial district. Northeast China. Plos One, 10, e0127736.

    Article  Google Scholar 

  • Kadri, I. B. (1995). Petroleum geology of Pakistan. Pakistan Petroleum Limited.

  • Karim, R., Tan, G., Ayugi, B., Babaousmail, H., Liu, F., Ngoma, H., & Ongoma, V. (2021). Future changes in seasonal temperature over Pakistan in CMIP6. Preprints 2021, 2021010188. https://doi.org/10.20944/preprints202101.0188.v1

  • Karim, Z., & Qureshi, B. A. (2013). Health risk assessment of heavy metals in urban soil of Karachi, Pakistan. Human and Ecological Risk Assessment: An International Journal, 20, 658–667.

    Article  Google Scholar 

  • Karim, Z., Qureshi, B. A., & Mumtaz, M. (2014). Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecological Indicators, 48, 358–364.

    Article  Google Scholar 

  • Kazmi, A. H., & Abbasi, I. A. (2008). Stratigraphy & historical geology of Pakistan. Department & National Centre of Excellence in Geology Peshawar.

  • Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Graphic publishers.

  • Kelepertzis, E. (2014). Investigating the sources and potential health risks of environmental contaminants in the soils and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicology and Environmental Safety, 100, 258–265.

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Shah, A. H., Saeed, F., Ali, M., Qaisrani, S. A., & Dumat, C. (2020). Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehari, Pakistan. Environmental Science and Pollution Research, 27, 39852–39864.

    Article  CAS  Google Scholar 

  • Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., Wei, L., & Wang, T. (2013). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 58, 449–458.

    Article  CAS  Google Scholar 

  • Khan, M., Achakzai, A., Iqbal, Y., Ullah, W., Khan, N., Sharif, M., Afzal, M., Bazai, Z., & Ullah, F. (2015). Heavy metals status of the urban and agricultural soils of Peshawar. Pakistan. Pure and Applied Biology, 4, 418.

    Article  CAS  Google Scholar 

  • Khan, M. U., Malik, R. N., & Muhammad, S. (2013). Human health risk from Heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere, 93, 2230–2238.

    Article  CAS  Google Scholar 

  • Khan, M. U., Muhammad, S., Malik, R. N., Khan, S. A., & Tariq, M. (2016). Heavy metals potential health risk assessment through consumption of wastewater irrigated wild plants: A case study. Human and Ecological Risk Assessment: An International Journal, 22, 141–152.

    Article  CAS  Google Scholar 

  • Khan, M. A., Wajid, A., Noor, S., Khattak, F. K., Akhter, S., & Rahman, I. U. (2008). Effect of soil contamination on some heavy metals content of Cannabis sativa. Journal of the Chemical Society of Pakistan, 30, 805–809.

    CAS  Google Scholar 

  • Khan, S., Khan, M., & Rehman, S. (2011). Lead and cadmium contamination of different roadside soils and plants in Peshawar City, Pakistan. Pedosphere, 21, 351–357.

    Article  Google Scholar 

  • Khan, S., Munir, S., Sajjad, M., & Li, G. (2016). Urban park soil contamination by potentially harmful elements and human health risk in Peshawar City, Khyber Pakhtunkhwa, Pakistan. Journal of Geochemical Exploration, 165, 102–110.

    Article  CAS  Google Scholar 

  • Khan, S., Rehman, S., Khan, A. Z., Khan, M. A., & Shah, M. T. (2010). Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety, 73, 1820–1827.

    Article  CAS  Google Scholar 

  • Khan, Z. I., Ahmad, K., Akram, N. A., Mehmood, N., & Yasmeen, S. (2017). Heavy metal contamination in water, soil and a potential vegetable garlic (Allium sativum L.) in Punjab Pakistan. Pakistan Journal of Botany, 49, 547–552.

    CAS  Google Scholar 

  • Khan, A. Z., Khan, S., Khan, M. A., Alam, M., & Ayaz, T. (2020). Biochar reduced the uptake of toxic heavy metals and their associated health risk via rice (Oryza sativa L.) grown in Cr-Mn mine contaminated soils. Environmental Technology & Innovation, 17, 100590.

  • Kicińska, A., Pomykała, R., & Izquierdo-Diaz, M. (2022). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73, e13203.

    Article  Google Scholar 

  • Komijani, M., Shamabadi, N. S., Shahin, K., Eghbalpour, F., Tahsili, M. R., & Bahram, M. (2021). Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment. Environmental Pollution, 274, 116569.

    Article  CAS  Google Scholar 

  • Li, H., Qian, X., Hu, W., Wang, Y., & Gao, H. (2013a). Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Science of the Total Environment, 456, 212–221.

    Article  Google Scholar 

  • Li, P.-H., Kong, S.-F., Geng, C.-M., Han, B., Lu, B., Sun, R.-F., Zhao, R.-J., & Bai, Z.-P. (2013b). Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places. Aerosol and Air Quality Research, 13, 255–265.

    Article  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  Google Scholar 

  • Lu, S., Teng, Y., Wang, Y., Wu, J., & Wang, J. (2015). Research on the ecological risk of heavy metals in the soil around a Pb–Zn mine in the Huize County, China. Chinese Journal of Geochemistry, 34, 540–549.

    Article  CAS  Google Scholar 

  • Lu, X., Zhang, X., Li, L. Y., & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, 27–34.

    Article  CAS  Google Scholar 

  • Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X., & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272.

    Article  CAS  Google Scholar 

  • Mahmood, A., Mahmoud, A. H., El-Abedein, A. I. Z., Ashraf, A., & Almunqedhi, B. M. (2020). A comparative study of metals concentration in agricultural soil and vegetables irrigated by wastewater and tube well water. Journal of King Saud University-Science, 32, 1861–1864.

    Article  Google Scholar 

  • Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7, 91–99.

    Article  CAS  Google Scholar 

  • Malik, R. N., Jadoon, W. A., & Husain, S. Z. (2010). Metal contamination of surface soils of industrial city Sialkot, Pakistan: A multivariate and GIS approach. Environmental Geochemistry and Health, 32, 179–191.

    Article  CAS  Google Scholar 

  • Malkani, M. S. (2015). Stratigraphy, mineral potential, geological history and paleobiogeography of Balochistan Province (p. 43). Sindh University Research Journal-SURJ (Science Series).

  • Mama, C., Nnaji, C., Emenike, P., & Chibueze, C. (2020). Potential environmental and human health risk of soil and roadside dust in a rapidly growing urban settlement. International Journal of Environmental Science and Technology, 17, 2385–2400.

    Article  CAS  Google Scholar 

  • Man, Y. B., Sun, X. L., Zhao, Y. G., Lopez, B. N., Chung, S. S., Wu, S. C., Cheung, K. C., & Wong, M. H. (2010). Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city. Environment International, 36, 570–576.

    Article  CAS  Google Scholar 

  • Mandal, S., Bhattacharya, S., & Paul, S. (2022). Assessing the level of contamination of metals in surface soils at thermal power area: Evidence from developing country (India). Environmental Chemistry and Ecotoxicology, 4, 37–49.

    Article  CAS  Google Scholar 

  • Maqbool, Z., Asghar, H. N., Shahzad, T., Hussain, S., Riaz, M., Ali, S., Arif, M. S., & Maqsood, M. (2015). Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra (Hibiscus esculentus L.) in chromium contaminated soils. Ecotoxicology and Environmental Safety, 114, 343–349.

  • Mohammad, J., Khan, S., Shah, M. T., & Islam-ud-din, A. A. (2015). Essential and nonessential metal concentrations in morel mushroom (Morchella esculenta) in Dir-Kohistan Pakistan. Pakistan Journal of Botany SI, 47, 133–138.

    CAS  Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2011). Heavy metal concentrations in soil and wild plants growing around Pb–Zn sulfide terrain in the Kohistan region, northern Pakistan. Microchemical Journal, 99, 67–75.

    Article  CAS  Google Scholar 

  • Muhammad, S., Shah, M. T., Khan, S., Saddique, U., Gul, N., Khan, M. U., Malik, R. N., Farooq, M., & Naz, A. (2013). Wild plant assessment for heavy metal phytoremediation potential along the mafic and ultramafic terrain in northern Pakistan. BioMed Research International. https://doi.org/10.1155/2013/194765

    Article  Google Scholar 

  • Muhammad, S., & Ullah, R. (2022). Spatial distribution of heavy metals contamination in sediments of alpine lakes and potential risk indices, Northern Pakistan. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2022.2042527

    Article  Google Scholar 

  • Muhammad, S., Ullah, R., & Jadoon, I. A. (2019). Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province. Pakistan. Microchemical Journal, 149, 103971.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Natasha, S. M., Khalid, S., Niazi, N. K., Murtaza, B., Ahmad, N., Farooq, A., Zakir, A., Imran, M., & Abbas, G. (2021). Health risks of arsenic buildup in soil and food crops after wastewater irrigation. Science of the Total Environment, 772, 145266.

    Article  CAS  Google Scholar 

  • Nawab, J., Khan, S., Shah, M. T., Gul, N., Ali, A., Khan, K., & Huang, Q. (2016). Heavy metal bioaccumulation in native plants in chromite impacted sites: A search for effective remediating plant species. CLEAN–Soil. Air, Water, 44, 37–46.

    Article  CAS  Google Scholar 

  • Naz, A., Khan, S., Muhammad, S., Ahmad, R., Khalid, S., Khan, A., Nazir, R., & Alam, S. (2020). Risk assessment of hazardous elements in wastewater irrigated soil and cultivated vegetables in Pakistan. Arabian Journal of Geosciences, 13(22), 1–9.

  • Nazeer, S., Hashmi, M. Z., & Malik, R. N. (2014). Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecological Indicators, 43, 262–270.

    Article  CAS  Google Scholar 

  • Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., Ameer, N., Sajed, M., Ullah, M., & Rafeeq, M. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. Journal of Pharmaceutical Sciences and Research, 7, 89.

    CAS  Google Scholar 

  • Nickens, K. P., Patierno, S. R., & Ceryak, S. (2010). Chromium genotoxicity: A double-edged sword. Chemico-Biological Interactions, 188, 276–288.

    Article  CAS  Google Scholar 

  • Packer, M. (2016). Cobalt cardiomyopathy: A critical reappraisal in light of a recent resurgence. Circulation: Heart Failure, 9, e003604.

    Google Scholar 

  • Pan, L., Ma, J., Hu, Y., Su, B., Fang, G., Wang, Y., Wang, Z., Wang, L., & Xiang, B. (2016). Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environmental Science and Pollution Research, 23, 19330–19340.

    Article  CAS  Google Scholar 

  • Rafeeq, A. (2020). Soil Contamination due to heavy metals at electronic waste dumpsites in Karachi, Pakistan. Pakistan Journal of Analytical & Environmental Chemistry, 21, 332–341.

    Article  CAS  Google Scholar 

  • Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K. A., Ng, H.-S., Munawaroh, H. S. H., Karaman, C., Orooji, Y., & Show, P. L. (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere, 287, 132369.

    Article  CAS  Google Scholar 

  • Raju, K. V., Somashekar, R., & Prakash, K. (2012). Heavy metal status of sediment in river Cauvery, Karnataka. Environmental Monitoring and Assessment, 184, 361–373.

    Article  Google Scholar 

  • Rashid, I., Murtaza, G., Dar, A. A., & Wang, Z. (2020). The influence of humic and fulvic acids on Cd bioavailability to wheat cultivars grown on sewage irrigated Cd-contaminated soils. Ecotoxicology and Environmental Safety, 205, 111347.

  • Rehman, Iu., Ishaq, M., Ali, L., Khan, S., Ahmad, I., Din, I. U., & Ullah, H. (2018). Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicology and Environmental Safety, 154, 127–136.

    Article  Google Scholar 

  • Rehman, I., Ishaq, M., Ali, L., Muhammad, S., Din, I. U., Yaseen, M., & Ullah, H. (2020a). Potentially toxic elements’ occurrence and risk assessment through water and soil of Chitral urban environment, Pakistan: A case study. Environmental Geochemistry and Health, 42(12), 4355–4368.

    Article  Google Scholar 

  • Rehman, I., Ishaq, M., Muhammad, S., Din, I. U., Khan, S., & Yaseen, M. (2020c). Evaluation of arsenic contamination and potential risks assessment through water, soil and rice consumption. Environmental Technology & Innovation, 20, 101155.

    Article  CAS  Google Scholar 

  • Rehman, Z. U., Khan, S., Qin, K., Brusseau, M. L., Shah, M. T., & Din, I. (2016). Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Science of the Total Environment, 550, 321–329.

    Article  CAS  Google Scholar 

  • Ren, Q., Sun, R.-L., Zheng, K.-X., Liu, Y.-D., Ruan, X.-L., & Wang, Y.-Y. (2022). Soil properties, heavy metal accumulation, and ecological risk in vegetable greenhouses of different planting years. Huan Jing Ke xueHuanjing Kexue, 43, 995–1003.

    Google Scholar 

  • Riaz, M., Yasmeen, T., Arif, M. S., Ashraf, M. A., Hussain, Q., Shahzad, S. M., et al. (2019). Variations in morphological and physiological traits of wheat regulated by chromium species in long-term tannery effluent irrigated soils. Chemosphere, 222, 891–903.

  • Rubio-Gracia, F., Argudo, M., Zamora, L., Clements, W. H., Vila-Gispert, A., Casals, F., & Guasch, H. (2022). Response of stream ecosystem structure to heavy metal pollution: Context-dependency of top-down control by fish. Aquatic Sciences, 84, 1–17.

    Article  Google Scholar 

  • Saddique, U., Muhammad, S., Tariq, M., Zhang, H., Arif, M., Jadoon, I. A., & Khattak, N. U. (2018). Potentially toxic elements in soil of the Khyber Pakhtunkhwa province and Tribal areas, Pakistan: Evaluation for human and ecological risk assessment. Environmental Geochemistry and Health, 40, 2177–2190.

    Article  CAS  Google Scholar 

  • Saifullah, Ghafoor, A., Zia, M. H., Murtaza, G., Waraich, E. A., Bibi, S., & Srivastava, P. (2010). Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.). International Journal of Phytoremediation, 12(7), 633–649.

  • Sakan, S. M., Đorđević, D. S., Manojlović, D. D., & Predrag, P. S. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, 3382–3390.

    Article  CAS  Google Scholar 

  • Saleem, M., Iqbal, J., & Shah, M. H. (2014). Non-carcinogenic and carcinogenic health risk assessment of selected metals in soil around a natural water reservoir, Pakistan. Ecotoxicology and Environmental Safety, 108, 42–51.

    Article  CAS  Google Scholar 

  • Sattar, S., Jehan, S., & Siddiqui, S. (2021). Potentially toxic metals in the petroleum waste contaminated soils lead to human and ecological risks in Potwar and Kohat Plateau, Pakistan: Application of multistatistical approaches. Environmental Technology & Innovation, 22, 101395.

    Article  CAS  Google Scholar 

  • Shaikh, R., Kazi, T. G., Afridi, H. I., Akhtar, A., Baig, J. A., & Arain, M. B. (2019). Geochemical exposure of heavy metals in environmental samples from the vicinity of old gas mining area in northern part of Sindh Pakistan. Adverse impact on children. Environmental Pollution, 255, 113305.

  • Shah, M. T., Begum, S., & Khan, S. (2010). Pedo and biogeochemical studies of mafic and ultramfic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environmental Earth Sciences, 60(5), 1091–1102.

  • Shah, A., Niaz, A., Ullah, N., Rehman, A., Akhlaq, M., Zakir, M., & Khan, M. S. (2013). Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry, 2013, 1–5. https://doi.org/10.1155/2013/621265

    Article  CAS  Google Scholar 

  • Shahid, M., Niazi, N. K., Dumat, C., Naidu, R., Khalid, S., Rahman, M. M., & Bibi, I. (2018). A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environmental Pollution, 242, 307–319.

    Article  CAS  Google Scholar 

  • Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood, T., Tufail, M. A., Shakoor, A., & Haris, M. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 28, 14211–14232.

    Article  Google Scholar 

  • Soliman, N. F., Nasr, S. M., & Okbah, M. A. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast. Egypt. Journal of Environmental Health Science and Engineering, 13, 1–12.

    Google Scholar 

  • Stigliani, W. M. (1996). Buffering capacity: Its relevance in soil and water pollution. New Journal of Chemistry, 20, 205–210.

    CAS  Google Scholar 

  • Sun, G., Li, Z., Bi, X., Chen, Y., Lu, S., & Yuan, X. (2013). Distribution, sources and health risk assessment of mercury in kindergarten dust. Atmospheric Environment, 73, 169–176.

    Article  CAS  Google Scholar 

  • Tahir, M., Iqbal, M., Abbas, M., Tahir, M., Nazir, A., Iqbal, D. N., Kanwal, Q., Hassan, F., & Younas, U. (2017). Comparative study of heavy metals distribution in soil, forage, blood and milk. Acta Ecologica Sinica, 37, 207–212.

    Article  Google Scholar 

  • Tariq, S. R., & Rashid, N. (2013). Multivariate analysis of metal levels in paddy soil, rice plants, and rice grains: A case study from Shakargarh, Pakistan. Journal of Chemistry. https://doi.org/10.1155/2013/539251

    Article  Google Scholar 

  • Tariq, S. R., & Ashraf, A. (2016). Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arabian Journal of Chemistry, 9(6), 806–814.

  • Tariq, S. R., Shah, M. H., Shaheen, N., Khalique, A., Manzoor, S., & Jaffar, M. (2006). Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: A case study from Peshawar, Pakistan. Journal of Environmental Management, 79(1), 20–29.

  • Tariq, S. R., Shah, M. H., & Shaheen, N. (2009). Comparative statistical analysis of chrome and vegetable tanning effluents and their effects on related soil. Journal of Hazardous Materials, 169, 285–290.

    Article  CAS  Google Scholar 

  • Tokatli, C. (2019). Sediment quality of Ergene River Basin: Bio–ecological risk assessment of toxic metals. Environmental Monitoring and Assessment, 191, 1–12.

    Article  Google Scholar 

  • Tokatli, C., & Islam, M. S. (2022). Spatiotemporal variations and bio-geo-ecological risk assessment of heavy metals in sediments of a wetland of international importance in Turkey. Arabian Journal of Geosciences, 15, 1–14.

    Article  Google Scholar 

  • Turan, V., Khan, S. A., Iqbal, M., Ramzani, P. M. A., & Fatima, M. (2018). Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicology and Environmental Safety, 161, 409–419.

  • Ullah, H., & Khan, I. (2015). Effects of sewage water irrigation of cabbage to soil geochemical properties and products safety in peri-urban Peshawar, Pakistan. Environmental Monitoring and Assessment, 187, 1–12.

    Article  CAS  Google Scholar 

  • Ullah, R., & Muhammad, S. (2020). Heavy metals contamination in soils and plants along with the mafic–ultramafic complex (Ophiolites), Baluchistan, Pakistan: Evaluation for the risk and phytoremediation potential. Environmental Technology & Innovation, 19, 100931.

    Article  Google Scholar 

  • Umar, M., Waseem, A., Sabir, M. A., Kassi, A. M., & Khan, A. S. (2013). The impact of geology of recharge areas on groundwater quality: A case study of Zhob River Basin, Pakistan. Clean-Soil, Air, Water, 41, 119–127.

    Article  CAS  Google Scholar 

  • USDOE. (2011). The risk assessment information system (RAIS). U.S. Department of Energy’s Oak Ridge Operations Office (ORO).

  • USEPA (1989a). Risk assessment guidance for superfund. Vol I Human Health Evaluation Manual (Part A). Office of Emergency and Remedial Response, Washington.

  • USEPA (1989b). Risk assessment guidance for superfund. volume I: Human health evaluation manual (Part A), 1. EPA/540/1–89/002.

  • USEPA. (2002a). Supplemental guidance for developing soil screening levels for superfund sites. U.S. Environmental Protection Agency Office of Emergency and Remedial Response.

  • USEPA. (2002b). Supplemental guidance for developing soil screening levels for superfund sites. U.S. Environmental Protection Agency Office of Emergency and Remedial Response.

  • Ustaoğlu, F., Islam, M. S., & Tokatli, C. (2022). Ecological and probabilistic human health hazard assessment of heavy metals in Sera Lake Nature Park sediments (Trabzon, Turkey). Arabian Journal of Geosciences, 15, 597.

    Article  Google Scholar 

  • Varol, M., Ustaoğlu, F., & Tokatlı, C. (2022). Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environmental Research, 205, 112478.

    Article  CAS  Google Scholar 

  • Verla, E. N., Verla, A. W., & Enyoh, C. E. (2020). Bioavailability, average daily dose and risk of heavy metals in soils from children playgrounds within Owerri, Imo State, Nigeria. Chemistry Africa, 3, 427–438.

    Article  CAS  Google Scholar 

  • Wang, Z., Chai, L., Yang, Z., Wang, Y., & Wang, H. (2010). Identifying sources and assessing potential risk of heavy metals in soils from direct exposure to children in a mine-impacted city, Changsha, China. Journal of Environmental Quality, 39, 1616–1623.

    Article  CAS  Google Scholar 

  • Weyh, C., Krüger, K., Peeling, P., & Castell, L. (2022). The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients, 14, 644.

    Article  CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., Zhou, S., Yang, G., Wan, H., & Wu, L. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

    Article  CAS  Google Scholar 

  • Yanez, L., Ortiz, D., Calderon, J., Batres, L., Carrizales, L., Mejia, J., Martinez, L., Garcia-Nieto, E., & Diaz-Barriga, F. (2002). Overview of Human Health and Regulatory Issues on Chemical Mixtures-Overview of Human Health and Chemical Mixtures: Problems Facing Developing Countries. Environmental Health Perspectives Supplement, 110, 901–910.

    Article  CAS  Google Scholar 

  • Yu, Y., Liu, L., Chen, X., Xiang, M., Li, Z., Liu, Y., Zeng, Y., Han, Y., & Yu, Z. (2021). Brominated flame retardants and heavy metals in common aquatic products from the pearl river delta, south china: Bioaccessibility assessment and human health implications. Journal of Hazardous Materials, 403, 124036.

    Article  CAS  Google Scholar 

  • Yüksel, B., Ustaoğlu, F., Tokatli, C., & Islam, M. S. (2022). Ecotoxicological risk assessment for sediments of Çavuşlu stream in Giresun, Turkey: Association between garbage disposal facility and metallic accumulation. Environmental Science and Pollution Research, 29, 17223–17240.

    Article  Google Scholar 

  • Zheng, J., Chen, K.-h, Yan, X., Chen, S.-J., Hu, G.-C., Peng, X.-W., Yuan, J.-g, Mai, B.-X., & Yang, Z.-Y. (2013). Heavy metals in food, house dust, and water from an e-waste recycling area in South China and the potential risk to human health. Ecotoxicology and Environmental Safety, 96, 205–212.

    Article  CAS  Google Scholar 

  • Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, 726–733.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of the Higher Education Commission, Pakistan is highly acknowledged.

Funding

Higher Education Commission, Pakistan provided financial support for the availability of data.

Author information

Authors and Affiliations

Authors

Contributions

Imran Ud Din was involved in data collection, calculations and writing a draft; Said Muhammad was involved in conceptualization of this study, funding acquisition, project administration, supervision, writing—review & editing of the manuscript; Inayat ur Rehman was involved in resources and software.

Corresponding author

Correspondence to Said Muhammad.

Ethics declarations

Conflict Of Interest

The authors declare no competing interests.

Consent to participate

All authors reviewed and approved the final manuscript.

Consent for publication

All authors are approved for this publication.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, I.U., Muhammad, S. & Rehman, I.u. Heavy metal(loid)s contaminations in soils of Pakistan: a review for the evaluation of human and ecological risks assessment and spatial distribution. Environ Geochem Health 45, 1991–2012 (2023). https://doi.org/10.1007/s10653-022-01312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01312-x

Keywords

Navigation