Skip to main content
Log in

Metal contamination of surface soils of industrial city Sialkot, Pakistan: a multivariate and GIS approach

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In this study concentrations of selected metals viz., Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Pb and Zn in surface soils of Sialkot city known worldwide for tanneries and pharmaceutical industries were measured to assess the status of urban soil pollution and to identify sources of contamination. Hierarchical cluster analysis (HACA) indicated concentrations of Mg and Ca related to parent rock material, Cd, Co, and Pb with traffic related activities, Cr, Cu, Ni and Zn either associated with automobiles activities or industrial pollution and Fe, K and Na related with anthropogenic activities or lithogenous materials. Correlation analyses and principal component analysis based on factor analysis confirmed the results of HACA. Spatial distribution maps exhibited relatively higher concentrations of Cd, Co, Cu, Ni, Pb, Cr and Zn along traffic routes in the city and streams. The results highlighted concentration of Cd, Ni, Cr, Zn, and Pb measured in urban soil exceeded the permissible limit of surface soils and advocated an imperative need for detailed baseline investigations of spatial distribution of heavy metals and other contaminants for the formulation of geochemical database that should be made available to stakeholder involved in monitoring, assessment and conservation of soil contamination for future planning and management of the Sialkot city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahim, G., & Parker, R. (2002). Heavy-metal contaminants in Tamaki Estuary: Impact of city development and growth, Auckland, New Zealand. Environmental Geology, 42, 883–890.

    Article  CAS  Google Scholar 

  • Adachia, K., & Tainoshob, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environmental International, 30, 1009–1017.

    Article  Google Scholar 

  • Alexander, I. (2004). Nonlinear dynamical factor analysis for state change detection. IEEE transactions on neural networks, 15, 559–575.

    Article  Google Scholar 

  • Alloway, B. J. (1990). Cadmium. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 100–124). Glasgow: Blackie and Son.

    Google Scholar 

  • Alloway, B. J. (1995). Soil processes and the behaviour of heavy metals. In B. J. Alloway (Ed.), Heavy metals in soils. London: Blackie Academic and Professional.

    Google Scholar 

  • Biptista-Neto, J. A., Gingele, F. X., Leipe, T., & Brehme, I. (2006). Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environmental Geology, 49, 1051–1063.

    Article  Google Scholar 

  • Bottoms, S. (2000). Cu probraze process in proving a hot technology. Materials World, 8, 1–18.

    Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomie Journal, 54, 464–465.

    Article  Google Scholar 

  • Brallier, S., Harrison, R. B., Henry, C. L., & Dongsen, X. (1996). Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously. Water, Air, and Soil pollution, 86, 196–206.

    Article  Google Scholar 

  • Bretzel, F., & Calderisi, M. (2006). Metal contamination in urban soils of coastal Tuscany Italy. Environmental Monitoring and Assessment, 118, 319–335.

    Article  CAS  Google Scholar 

  • Chen, M., Lena, Q. M., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida surface soils. Journal of Environmental Quality, 28, 1173–1181.

    Article  CAS  Google Scholar 

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., et al. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60, 542–551.

    Article  CAS  Google Scholar 

  • De Kimpe, C. R., & Morel, J. L. (2000). Urban soil management: a growing concern. Soil Science, 165, 31–40.

    Article  Google Scholar 

  • Einax, J. W., & Soldt, U. (1998). Multivariate geostatistical analysis of soil contaminations. Fresenius Journal of Analytical Chemistry, 361, 10–14.

    Article  CAS  Google Scholar 

  • Everitt, B. S. (1993). Cluster analysis. London: Edward Arnold.

    Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Friberg, L., Mardberg, G. F., & Vouk, V. (1986). Handbook on the toxicology of the metals (2nd ed.). London: Elsevier.

    Google Scholar 

  • Garcia, R., & Millan, E. (1998). Assessment of Cd, Pb, and Zn contamination in roadside soils and grasses from Gipuzkoa, Spain. Chemosphere, 37, 1615–1625.

    Article  CAS  Google Scholar 

  • Haiyan, W., & Stuanes, A. O. (2003). Heavy metal pollution in air-water-soil-plant system of Zhuzhou city, Hunan Province, China. Water, Air, and Soil pollution, 147, 79–107.

    Article  Google Scholar 

  • Hill, T., & Lewicki, P. (2006). Statistics. Method and applications: A comprehensive reference for science, industry and data mining (1st ed.). Tulsa: Wyd. Statsoft.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.

    Google Scholar 

  • Kelly, J., Thornton, I., & Simpson, P. R. (1996). Urban geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Applied Geochemistry, 11, 363–370.

    Article  CAS  Google Scholar 

  • Khan, M., & Scullion, J. (2002). Effect of metal (Cd, Cu, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Applied Soil Ecology, 20, 145–155.

    Article  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2004). Heavy metal contamination of soil around Pali industrial area, Rajasthan, India. Environmental Geology, 47, 38–44.

    Article  CAS  Google Scholar 

  • Krishna, K., & Govil, P. K. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275.

    Article  CAS  Google Scholar 

  • Lee, C. S., Li, X., Shi, W., Cheung, S. C., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Khong: A study based on GIS and multivariate statistics. Science of Total Environment, 356, 45–61.

    Article  CAS  Google Scholar 

  • Li, X., & Huang, C. (2007). Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city, P. R. China. Environmental Geology, 52, 1631–1637.

    Article  CAS  Google Scholar 

  • Li, X., Lee, C. S., Wong, S. C., Shi, W., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using GIS-based approach. Environmental Pollution, 129, 113–124.

    Article  CAS  Google Scholar 

  • Lin, S., Hsieh, I. J., Huang, K. M., & Wang, C. H. (2002). Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology, 182, 377–394.

    Article  CAS  Google Scholar 

  • Mahmut, C., Eiliv, S., Viladimirovna, F. M., Eidhammer, S. T., & Svetlana, D. (2005). Heavy metal pollution of surface soil in the thrace region Turkey. Environmental Monitoring and Assessment, 119, 545–556.

    Google Scholar 

  • Malik, R. N., & Husain, S. Z. (2006). Classification and ordination of vegetation communities of the Lohibehr reserve forest and its surrounding areas, Rawalpindi, Pakistan. Pakistan Journal of Botany, 38, 543–558.

    Google Scholar 

  • Malik, R. N., & Husain, S. Z. (2007). Broussonetia papyrifera (L.) L’Hér. ex Vent.: An environmental constraint on the Himalayan foothills vegetation. Pakistan Journal of Botany, 39, 1045–1053.

    Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of Total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • Marcus, W. A. (1989). Regulating contaminated sediments in aquatic environments: A hydrologic perspective. Environmental Management, 13, 703–713.

    Article  Google Scholar 

  • Markus, J. A., & Mabratney, A. B. (1996). An urban soil study: heavy metals in Glebe, Australia. Soil Research, 34, 453–465.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter: Methods of soil analysis. Part 2. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Chemical and microbiological properties. Agronomy Series No. 9, Part 2 (pp. 539–577). Madison: American Society of Agronomy.

    Google Scholar 

  • Newsome, T., Aranguren, F., & Brinkman, R. (1997). Lead contamination adjacent to roadways in Trujillo, Venezuela. Professional Geographer, 49, 331–341.

    Article  Google Scholar 

  • Nimmo, W. (1998). New design radiators. Canadian Copper, 139, 8–9.

    Google Scholar 

  • Pardo, R., Barrado, E., Perez, L., & Vega, M. (1990). Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Research, 24, 373–379.

    Article  CAS  Google Scholar 

  • Plant, J., Smith, D., Smith, B., & Williams, L. (2001). Environmental geochemistry at the global scale. Applied Geochemistry, 16, 1291–1308.

    Article  CAS  Google Scholar 

  • Qadir, A., & Malik, R. N. (2009). Assessment of an index of biological integrity (IBI) to quantify the quality of two tributaries of River Chenab, Sialkot, Pakistan. Hydrobiologia, 621, 127–153.

    Article  CAS  Google Scholar 

  • Qadir, A., Malik, R. N., & Husain, S. Z. (2008). Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140, 43–59.

    Article  CAS  Google Scholar 

  • Reiuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10, 61–75.

    Article  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural top-soils in urban area. Environmental Geology, 43, 795–805.

    CAS  Google Scholar 

  • Sayed, S., Ashour, A., & Youssef, G. I. (2003). Effect of sulfide ion on the corrosion behaviour Al-brass and Cu10Ni alloys in salt water. Material Chemistry and Physics, 78, 825–834.

    Article  CAS  Google Scholar 

  • Simeonov, V., Einax, J., Tsakovski, S., & Kraft, J. (2005). Multivariate statistical assessment of polluted soils. Central European Journal of Chemistry, 3, 1–9.

    Article  CAS  Google Scholar 

  • Simonson, R. W. (1995). Airborne dust and its significance to soil. Geoderma, 65, 1–43.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques. A case study. Analytica Chimica Acta, 538, 355–374.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (1992). Keys to soil taxonomy (6th ed.). Washington, DC: USDA–Soil Conservation Service.

    Google Scholar 

  • Tuchschmid, N. (2002). Cluster analysis: application to sector indices and empirical validation. Swiss Society for Financial Market Research, 16, 467–486.

    Google Scholar 

  • Wang, X. S., & Qin, Y. (2006). Spatial distribution of metals in urban topsoils of Xuzhou (China): controlling factors and environmental implications. Environmental Geology, 49, 905–914.

    Article  CAS  Google Scholar 

  • Zhang, C. S. (2005). Using multivirate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental pollution, 1-11.

Download references

Acknowledgments

The authors are thankful to Mr. Tanweer for helping in metal analysis on Atomic Absorption. Thanks are to Mr. Zafeer Saqib, Mr. Abdul Qadir and Mr. Rizwanulla, Environmental Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan for their assistance in field work. Research work was done when Mr W. A. Jadoon was M.Phil student under supervision of Rifffat N Malik in Environmental laboratory, Quaid-i-Azam University, Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riffat Naseem Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, R.N., Jadoon, W.A. & Husain, S.Z. Metal contamination of surface soils of industrial city Sialkot, Pakistan: a multivariate and GIS approach. Environ Geochem Health 32, 179–191 (2010). https://doi.org/10.1007/s10653-009-9274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9274-1

Keywords

Navigation