Skip to main content
Log in

Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Although particulate matter (PM) is composed of various chemicals, investigations regarding the toxicity that results from mixing the substances in PM are insufficient. In this study, the effects of low levels of three PAHs (benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene) on Ni toxicity were investigated to assess the combined effect of Ni–PAHs on the environment. We compared the difference in cell mortality and total glutathione (tGSH) reduction between single Ni and Ni–PAHs co-exposure using A549 (human alveolar carcinoma). In addition, we measured the change in Ni solubility in chloroform that was triggered by PAHs to confirm the existence of cation–π interactions between Ni and PAHs. In the single Ni exposure, the dose–response curve of cell mortality and tGSH reduction were very similar, indicating that cell death was mediated by the oxidative stress. However, 10 μM PAHs induced a depleted tGSH reduction compared to single Ni without a change in cell mortality. The solubility of Ni in chloroform was greatly enhanced by the addition of benz[a]anthracene, which demonstrates the cation–π interactions between Ni and PAHs. Ni–PAH complexes can change the toxicity mechanisms of Ni from oxidative stress to others due to the reduction of Ni2+ bioavailability and the accumulation of Ni–PAH complexes on cell membranes. The abundant PAHs contained in PM have strong potential to interact with metals, which can affect the toxicity of the metal. Therefore, the mixture toxicity and interactions between diverse metals and PAHs in PM should be investigated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.

    Article  Google Scholar 

  • Aschi, M., Mazza, F., & Di Nola, A. (2002). Cation–π interactions between ammonium ion and aromatic rings: An energy decomposition study. Journal of Molecular Structure: THEOCHEM, 587(1), 177–188.

    Article  CAS  Google Scholar 

  • Baggiani, C., Anfossi, L., Baravalle, P., Giovannoli, C., & Giraudi, G. (2007). Molecular recognition of polycyclic aromatic hydrocarbons by pyrene-imprinted microspheres. Analytical and Bioanalytical Chemistry, 389(2), 413–422.

    Article  CAS  Google Scholar 

  • Benedetti, M., Fattorini, D., Martuccio, G., Nigro, M., & Regoli, F. (2009). Interactions between trace metals (Cu, Hg, Ni, Pb) and 2,3,7,8-tetrachlorodibenzo-p-dioxin in the antarctic fish Trematomus bernacchii: Oxidative effects on biotransformation pathway. Environmental Toxicology and Chemistry, 28(4), 818–825.

    Article  CAS  Google Scholar 

  • Benedetti, M., Martuccio, G., Fattorini, D., Canapa, A., Barucca, M., Nigro, M., et al. (2007). Oxidative and modulatory effects of trace metals on metabolism of polycyclic aromatic hydrocarbons in the Antarctic fish Trematomus bernacchii. Aquatic Toxicology, 85(3), 167–175.

    Article  CAS  Google Scholar 

  • Das, K., Das, S., & Dhundasi, S. (2008). Nickel, its adverse health effects and oxidative stress. Indian Journal of Medical Research, 128(4), 412.

    CAS  Google Scholar 

  • Dergham, M., Lepers, C., Verdin, A., Cazier, F., Billet, S., Courcot, D., et al. (2015). Temporal–spatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM 2.5–0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B). Environmental Research, 137, 256–267.

    Article  CAS  Google Scholar 

  • Gauthier, P. T., Norwood, W. P., Prepas, E. E., & Pyle, G. G. (2014). Metal–PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than-additive outcomes. Aquatic Toxicology, 154, 253–269.

    Article  CAS  Google Scholar 

  • Gauthier, P. T., Norwood, W. P., Prepas, E. E., & Pyle, G. G. (2015). Metal–polycyclic aromatic hydrocarbon mixture toxicity in Hyalella azteca. 2. Metal accumulation and oxidative stress as interactive co-toxic mechanisms. Environmental Science and Technology, 49(19), 11780–11788.

    Article  CAS  Google Scholar 

  • Gust, K. A., & Fleeger, J. W. (2006). Exposure to cadmium–phenanthrene mixtures elicits complex toxic responses in the freshwater tubificid oligochaete, Ilyodrilus templetoni. Archives of Environmental Contamination and Toxicology, 51(1), 54–60.

    Article  CAS  Google Scholar 

  • Honda, A., Chowdhury, P. H., Ito, S., Okano, H., Onishi, T., Kawaryu, Y., et al. (2017). Synergic effects of 9,10-phenanthrenequinone and cadmium on pro-inflammatory responses in airway epithelial cells. Environmental Toxicology and Pharmacology, 52, 276–279.

    Article  CAS  Google Scholar 

  • Jensen, M. H. S., & Krøkje, Å. (2008). Application of statistical experimental design and multivariate data analysis for evaluation of mixtures using cytochrome P4501A induction. Environmental Toxicology and Chemistry, 27(8), 1735–1743.

    Article  CAS  Google Scholar 

  • Jover, R., Ponsoda, X., Castell, J. V., & Gómez-Lechón, M. J. (1994). Acute cytotoxicity of ten chemicals in human and rat cultured hepatocytes and in cell lines: Correlation between in vitro data and human lethal concentrations. Toxicology in Vitro, 8(1), 47–54.

    Article  CAS  Google Scholar 

  • Kasprzak, K. S., Sunderman, F. W., & Salnikow, K. (2003). Nickel carcinogenesis. Mutation research/fundamental and molecular mechanisms of mutagenesis, 533(1), 67–97.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.

    Article  CAS  Google Scholar 

  • Lee, M. (2014). An analysis on the concentration characteristics of PM2.5 in Seoul, Korea from 2005 to 2012. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 585–594.

    Article  Google Scholar 

  • Lee, J.-C., Son, Y.-O., Pratheeshkumar, P., & Shi, X. (2012). Oxidative stress and metal carcinogenesis. Free Radical Biology and Medicine, 53(4), 742–757.

    Article  CAS  Google Scholar 

  • Lippmann, M., Ito, K., Hwang, J.-S., Maciejczyk, P., & Chen, L.-C. (2006). Cardiovascular effects of nickel in ambient air. Environmental Health Perspectives, 114(11), 1662.

    Article  CAS  Google Scholar 

  • Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30(1), 42–59.

    Article  CAS  Google Scholar 

  • Ma, J. C., & Dougherty, D. A. (1997). The cation–π interaction. Chemical Reviews, 97(5), 1303–1324.

    Article  CAS  Google Scholar 

  • Mackay, D., Shiu, W.-Y., Ma, K.-C., & Lee, S. C. (2006). Handbook of physical–chemical properties and environmental fate for organic chemicals. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Mahadevi, A. S., & Sastry, G. N. (2012). Cation–π interaction: Its role and relevance in chemistry, biology, and material science. Chemical Reviews, 113(3), 2100–2138.

    Article  CAS  Google Scholar 

  • Moorthy, B., Chu, C., & Carlin, D. J. (2015). Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicological Sciences, 145(1), 5–15.

    Article  CAS  Google Scholar 

  • Muthusamy, S., Peng, C., & Ng, J. C. (2016a). The binary, ternary and quaternary mixture toxicity of benzo[a]pyrene, arsenic, cadmium and lead in HepG2 cells. Toxicology Research, 5(2), 703–713.

    Article  CAS  Google Scholar 

  • Muthusamy, S., Peng, C., & Ng, J. C. (2016b). Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells. Chemosphere, 165, 41–51.

    Article  CAS  Google Scholar 

  • Ng, K. M., Ma, N. L., & Tsang, C. W. (1998). Cation–aromatic π interaction in the gas phase: An experimental study on relative silver (I) ion affinities of polyaromatic hydrocarbons. Rapid Communications in Mass Spectrometry, 12(22), 1679–1684.

    Article  CAS  Google Scholar 

  • Perina, F. C., de Souza Abessa, D. M., Pinho, G. L. L., & Fillmann, G. (2011). Comparative toxicity of antifouling compounds on the development of sea urchin. Ecotoxicology, 20(8), 1870–1880.

    Article  CAS  Google Scholar 

  • Pope, C. A., III. (2000). What do epidemiologic findings tell us about health effects of environmental aerosols? Journal of Aerosol Medicine, 13(4), 335–354.

    Article  Google Scholar 

  • Pulido, M. D., & Parrish, A. R. (2003). Metal-induced apoptosis: Mechanisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 533(1), 227–241.

    Article  CAS  Google Scholar 

  • Qu, X., Wang, X., & Zhu, D. (2007). The partitioning of PAHs to egg phospholipids facilitated by copper and proton binding via cation–π interactions. Environmental Science and Technology, 41(24), 8321–8327.

    Article  CAS  Google Scholar 

  • Ravindra, K., Mittal, A. K., & Van Grieken, R. (2001). Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review. Reviews on Environmental Health, 16(3), 169–189.

    Article  CAS  Google Scholar 

  • Steenhof, M., Gosens, I., Strak, M., Godri, K. J., Hoek, G., Cassee, F. R., et al. (2011). In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential—The RAPTES project. Particle and Fibre Toxicology, 8(1), 26.

    Article  CAS  Google Scholar 

  • Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology (pp. 49–133). Berlin: Springer.

    Chapter  Google Scholar 

  • Tao, Y., Li, W., Xue, B., Zhong, J., Yao, S., & Wu, Q. (2013). Different effects of copper(II), cadmium(II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria. Journal of Hazardous Materials, 261, 21–28.

    Article  CAS  Google Scholar 

  • Tao, Y., Xue, B., Yang, Z., Yao, S., & Li, S. (2015). Effects of metals on the uptake of polycyclic aromatic hydrocarbons by the cyanobacterium Microcystis aeruginosa. Chemosphere, 119, 719–726.

    Article  CAS  Google Scholar 

  • Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C, 26(4), 339–362.

    Article  CAS  Google Scholar 

  • Van Leeuwen, H. (2000). Speciation dynamics and bioavailability of metals. Journal of Radioanalytical and Nuclear Chemistry, 246(3), 487–492.

    Article  Google Scholar 

  • Vijay, D., & Sastry, G. N. (2008). Exploring the size dependence of cyclic and acyclic π-systems on cation–π binding. Physical Chemistry Chemical Physics, 10(4), 582–590.

    Article  CAS  Google Scholar 

  • Voutsa, D., & Samara, C. (2002). Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric Environment, 36(22), 3583–3590.

    Article  CAS  Google Scholar 

  • Wang, P., Luo, L., Ke, L., Luan, T., & Tam, N. F. Y. (2013). Combined toxicity of polycyclic aromatic hydrocarbons and heavy metals to biochemical and antioxidant responses of free and immobilized Selenastrum capricornutum. Environmental Toxicology and Chemistry, 32(3), 673–683.

    Article  CAS  Google Scholar 

  • WHO & UNAIDS. (2006). Air quality guidelines: Global update 2005. Geneva: World Health Organization.

    Google Scholar 

  • Xiao, L., Qu, X., & Zhu, D. (2007). Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding. Environmental Science and Technology, 41(8), 2750–2755.

    Article  CAS  Google Scholar 

  • Yang, L., Liu, G., Lin, Z., Wang, Y., He, H., Liu, T., et al. (2016). Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells. Environmental Toxicology, 31(8), 923–936.

    Article  CAS  Google Scholar 

  • Zhang, Z., Chau, P. Y., Lai, H., & Wong, C. (2009). A review of effects of particulate matter-associated nickel and vanadium species on cardiovascular and respiratory systems. International Journal of Environmental Health Research, 19(3), 175–185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Korea Environment Industry & Technology Institute (KEITI) through “The Chemical Accident Prevention Technology Development Project”, funded by Korea Ministry of Environment (MOE) (No. 2016001970001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Don Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Lee, Y. & Kim, S.D. Cytotoxicity induced by the mixture components of nickel and poly aromatic hydrocarbons. Environ Geochem Health 41, 391–400 (2019). https://doi.org/10.1007/s10653-018-0139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0139-3

Keywords

Navigation