Skip to main content
Log in

Molecular recognition of polycyclic aromatic hydrocarbons by pyrene-imprinted microspheres

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pyrene-imprinted microbeads that display molecular recognition towards polyaromatic hydrocarbons (PAHs) were obtained by the aqueous suspension thermopolymerization of a mixture of template, 4-vinylpyridine and divinylbenzene in the molar ratio of 1:8:40. The microbeads were packed into an HPLC column and the retention behaviour of pyrene in the presence of eluents of increasing polarity was investigated by measuring the binding capacity and the imprinting factor. Selectivity was evaluated by eluting pyrene and 22 other related PAHs in the HPLC column when equilibrated with acetonitrile–dichloromethane 4:1 (v/v). Twelve molecular descriptors were calculated for each PAH molecule: MW, the molecular weight; SAS, the solvent-accessible molecular surface area; Svdw, the van der Waals molecular surface area; Vol, the van der Waals molecular volume; MOv, the molecular ovality; RG, the radius of gyration; B/L, the breadth-to-length ratio; μ 2, the square of the total dipole moment; HOMO, the highest occupied molecular orbital; LUMO, the lowest unoccupied molecular orbital; Δorb, the absolute value of the difference between the HOMO and LUMO; log P, the logarithm of the n-octanol–water partition coefficient. Quantitative structure–retention relationships between the logarithm of the capacity factors and these descriptors were searched for using a multiple linear regression (MLR) method. The best regression models obtained showed that the capacity factor correlated well with those molecular descriptors which had structural character, such as logP, while the effect of the molecular descriptors with electronic character was negligible. The results obtained indicate that the molecular recognition of PAHs by the imprinted polymer is controlled by the shape and dimension of the binding sites through hydrophobic interactions.

Retention and imprinting factors of PAHs on the impinted and not-imprinted columns. The area under the lower diagonal line (IF = 1.0) corresponds to the absence of imprinting effect for the interaction between the stationary phase and a given PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–d
Fig. 5a–d
Fig. 6a–d

Similar content being viewed by others

Abbreviations

ACP:

acenaphthene

ACY:

acenaphthylene

ACN:

acetonitrile

ANT:

anthracene

BaA:

benz[a]anthracene

BbA:

benzo[b]anthracene

BbF:

benzo[b]fluoranthene

BjF:

benzo[j]fluoranthene

BkF:

benzo[k]fluoranthene

BgP:

benzo[ghi]perylene

BaP:

benzo[a]pyrene

BeP:

benzo[e]pyrene

CHR:

chrysene

CPP:

cyclopenta[cd]pyrene

DeP:

dibenzo[ae]pyrene

DhA:

dibenzo[ah]anthracene

DhP:

dibenzo[ah]pyrene

DlP:

dibenzo[al]pyrene

DCM:

dichloromethane

F:

F-test of significance

FLT:

fluoranthene

FLR:

fluorene

HOMO:

highest occupied molecular orbital

IcP:

indeno[1,2,3-cd]pyrene

IF:

imprinting factor

k:

retention factor

L/B:

molecular length-to-breadth ratio

logP:

n-octanol–water partition coefficient

LUMO:

lowest unoccupied molecular orbital

MIP:

molecularly imprinted polymer

MISPE:

molecularly imprinted solid-phase extraction

MLR:

multiple linear regression

MOv:

molecular ovality

MW:

molecular weight

NAP:

naphthalene

NIP:

non-imprinted polymer

P:

significance level of the model

PAH:

polycyclic aromatic hydrocarbon

PHE:

phenanthrene

PRESS:

predicted residual error sum of squares

PYR:

pyrene

QSRR:

quantitative structure–retention relationship

\(R^{2}_{{{\text{adj}}}} \) :

adjusted multiple correlation coefficient

RG:

radius of gyration

SAS:

solvent-accessible molecular surface area

SEE:

standard error of estimate

Svdw:

van der Waals molecular surface area

Vol:

van der Waals molecular volume

Δorb:

difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital

μ 2 :

square of total dipole moment

References

  1. Harvey RG (eds) (1997) Polycyclic aromatic hydrocarbons. Wiley–VCH, New York

  2. Groopman JD, Kensler TW (1993) Chem Res Toxicol 6:764–770

    Article  CAS  Google Scholar 

  3. Wenzl T, Simon R, KleinerJ, Anklam E (2006) Trends Anal Chem 25:716–725

    Article  CAS  Google Scholar 

  4. Dickert FL, Besenbock H, Tortschanoff M (1988) Adv Mater 10:149–151

    Article  Google Scholar 

  5. Dickert FL, Forth P, Lieberzeit P, Tortschanoff M (1998) Fresenius J Anal Chem 360:759–762

    Article  CAS  Google Scholar 

  6. Dickert FL, Tortschanoff M, Bulst WE, Fischerauer G (1999) Anal Chem 71:4559–4563

    Article  CAS  Google Scholar 

  7. Dickert FL, Achatz P, Halikias K (2001) Fresenius J Anal Chem 371:11–15

    Article  CAS  Google Scholar 

  8. Kirsch N, Hart JP, Bird DJ, Luxton RW, Mc Calley DV (2001) Analyst 126:1936–1941

    Article  CAS  Google Scholar 

  9. Kirsch N, Honeychurch KC, Hart JP, Whitcombe MJ (2005) Electroanalysis 17:571–578

    Article  CAS  Google Scholar 

  10. Salinas-Castillo A, Sanchez-Barragan I, Costa-Fernandez JM, Pereiro R, Ballestreros A, Gonzalez JM, Segura-Carretero A, Fernandez-Gutierrez A, Sanz-Mendel A (2005) Chem Commun 3224–3226

  11. Carlson CA, Lloyd JA, Dean SL, Walker NR, Edmiston PL (2006) Anal Chem 78:3537–3542

    Article  CAS  Google Scholar 

  12. Luo N, Hatchett DW, Rogers KR (2006) Electroanalysis 18:2180–2187

    Article  CAS  Google Scholar 

  13. Lai JP, Niessner R, Knopp D (2004) Anal Chim Acta 522:137–144

    Article  CAS  Google Scholar 

  14. Bodor N, Huang MJ (1992) J Pharmaceut Sci 81:272–281

    Article  CAS  Google Scholar 

  15. Wise SA, Bonnett WJ, Guenther FR, May WE (1981) J Chromatogr Sci 19:457–465

    CAS  Google Scholar 

  16. Catabay A, Okumura C, Jinno K, Pesek JJ, Williamsen E, Fetzer JC, Biggs WR (1998) Chromatographia 47:13–20

    Article  CAS  Google Scholar 

  17. Chen S, Fetzer JC, Meyerhoff ME (2001) Fresenius J Anal Chem 369:385–392

    Article  CAS  Google Scholar 

  18. Markuszewski M, Kaliszan R (2002) J Chromatogr B 768:55–66

    Article  CAS  Google Scholar 

  19. Moon T, Chi MW, Park SJ, Yoon CN (2003) J Liq Chromatogr R T 26:2987–3002

    Article  CAS  Google Scholar 

  20. Baczek T, Wiczling P, Marszall M, Vander Heyden Y, Kaliszan R (2006) J Proteome Res 4:555–563

    Article  Google Scholar 

  21. Næs T, Mevik BH (2001) J Chemometrics 15:413–426

    Article  Google Scholar 

  22. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of chemometrics and qualimetrics, Part A. Elsevier Science, Amsterdam

  23. Leo A, Hansch C, Jow PYC (1976) J Med Chem 19:611–615

    Article  CAS  Google Scholar 

  24. Pap T, Horvai G (2004) J Chromatogr A 1034:99–107

    Article  CAS  Google Scholar 

  25. Jones AC (2003) Ph.D. thesis. University of Wales, Cardiff, UK

  26. Baggiani C, Anfossi L, Giovannoli C, Tozzi C (2004) J Chromatogr B 804:31–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Water Research Institute of CNR (Milan, Italy) and the Piedmont Regional Agency for Environmental Protection—Food Division (Torino, Italy), which kindly furnished samples of PAHs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Baggiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baggiani, C., Anfossi, L., Baravalle, P. et al. Molecular recognition of polycyclic aromatic hydrocarbons by pyrene-imprinted microspheres. Anal Bioanal Chem 389, 413–422 (2007). https://doi.org/10.1007/s00216-007-1318-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1318-8

Keywords

Navigation