Skip to main content
Log in

Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelhafez, A. A., Li, J., & Abbas, M. H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere, 117, 66–71.

    Article  CAS  Google Scholar 

  • Abumaizar, R. J., & Smith, E. H. (1999). Heavy metal contaminants removal by soil washings. Journal of Hazardous Materials, 70(1–2), 71–86.

    Article  CAS  Google Scholar 

  • Acharya, P. (1994). Incineration at Bayou Bonfouca remediation project. Journal of the Air and Waste Management Association, 44, 1195–1203.

    Article  CAS  Google Scholar 

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122(2–4), 121–142.

    Article  CAS  Google Scholar 

  • Agrawal, A., & Sahu, K. K. (2006). Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. Journal of Hazardous Materials, 137(2), 915–924.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Yang, J. E., Ro, H. M., Lee, Y. H., & Ok, Y. S. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 79, 225–231. doi:10.1016/j.ecoenv.2012.01.003.

    Article  CAS  Google Scholar 

  • Alghanmi, S. I., Al Sulami, A. F., EI-Zayat, T. A., Alhogbi, B. G., & Abdel Salam, M. (2015). Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: Kinetic and thermodynamics. International Soil and Water Conservation Research, 3(3), 196–208.

    Article  Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability, Environmental pollution (Vol. 22, pp. 50–102). Whiteknights, UK: Springer.

  • Alpaslan, B., & Yukselen, M. A. (2008). Remediation of lead contaminated soils by stabilization/solidification. Water, Air, and Soil pollution, 133(1), 253–263. doi:10.1023/A:1012977829536.

    Article  Google Scholar 

  • Alshawabkeh, A. N., & Bricka, R. M. (2013). Basics and application of electrokinetics remediation, Remediation engineering of contaminated soils (pp. 95–111). New York, NY: Marcel Dekker.

  • Alshawabkeh, A.N., Bricka, R.M. (2013). Basics and application of electrokinetics remediation, Remediation engineering of contaminated Soils (pp. 95–111). New York, NY: Marcel Dekker Inc.

  • Al-Wabel, M. I., Usman, A. R. A., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, A., et al. (2014). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22(4), 503–511.

    Article  CAS  Google Scholar 

  • Amezcua-Allieri, M. A., Lead, J. R., & Guez-Va´zquez, R. R. (2005). Impact of microbial activity on copper, lead and nickel mobilization during the bioremediation of soil PAHs. Chemosphere, 61(4), 484–491.

    Article  CAS  Google Scholar 

  • Amore, J. J. D., Al-Abed, S. R., Scheckel, K. G., & Ryan, J. A. (2005). Methods for speciation of metals in soils: a review. Journal of Environmental Quality, 34(5), 1707–1745.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. In A. A. Balkema (Ed.), (pp. 311–358). Leiden: CRC Press.

  • Arnesen, K. M., & Singh, B. R. (1999). Plant uptake and DTPA-extractability of Cd, Cu, Ni and Zn in a Norwegian alum shale soil as affected by previous addition of dairy and pig manures and peat. Canadian Journal of Soil Science, 78(3), 531–539.

    Article  Google Scholar 

  • Babu, A. G., Kim, J. D., & Oh, B. T. (2013). Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Journal of Hazardous Materials, 250–251, 477–483.

    Article  CAS  Google Scholar 

  • Bade, B., Oh, S., & Shin, W. S. (2012). Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicology and Environmental Safety, 80, 299–307.

    Article  CAS  Google Scholar 

  • Badruddoza, A. Z. M., Tay, A. S. H., Tan, P. Y., Hidajat, K., & Uddin, M. S. (2011). Carboxymethyl-beta-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. Journal of Hazardous Materials, 185(2–3), 1177–1186.

    Article  CAS  Google Scholar 

  • Basta, N., & McGowen, S. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127(1), 73–82.

    Article  CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474–480.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jimenez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287.

    Article  CAS  Google Scholar 

  • Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., et al. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128. doi:10.1016/j.jhazmat.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Adriano, D. C., Mani, P., Duraisamy, A., & Arulmozhiselvan, S. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant and Soil, 250(2), 187–198.

    Article  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., et al. (2014). Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? Journal of Hazardous Material, 266, 141–166.

    Article  CAS  Google Scholar 

  • Bosecker, K. (2001). Microbial leaching in environmental clean-up programs. Hydrometallurgy, 59(2–3), 245–248.

    Article  CAS  Google Scholar 

  • Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ treatments to reduce the phyto- and bioavailability of lead, zinc and cadmium. Journal of Environmental Quality, 33(2), 522–531.

    Article  CAS  Google Scholar 

  • Brown, S. L., Sprenger, M., Maxemchuk, A., & Compton, H. (2005). Ecosystem function in alluvial tailings after biosolids and lime application. Journal of Environmental Quality, 3(1), 41–46.

    Google Scholar 

  • Cang, L., Zhou, D. M., Wang, Q. Y., & Wu, D. Y. (2009). Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. Journal of Hazardous Materials, 172(2–3), 1602–1607.

    Article  CAS  Google Scholar 

  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428.

    Article  CAS  Google Scholar 

  • Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardus Materials, 164, 555–564.

  • Castaldi, P., Santona, L., & Melis, P. (2005). Heavy metals immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 60(3), 365–371.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429–1443.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Reeves, P. G., Ryan, J. A., Simmons, R. W., Welch, R. M., & Angle, J. S. (2004). An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. BioMetals, 17(5), 549–553.

    Article  CAS  Google Scholar 

  • Chen, Y. H., & Li, F. A. (2010). Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. Journal of Colloid and Interface Science, 347(2), 277–281.

    Article  CAS  Google Scholar 

  • Chen, X., Wright, J., Conca, J., & Perurrung, L. (1997a). Evaluation of heavy metal remediation using mineral apatite. Water, Air, and Soil Pollution, 98(1), 57–78. doi:10.1007/BF02128650.

    Article  CAS  Google Scholar 

  • Chen, X., Wright, J. V., Conca, J. L., & Peurrung, L. (1997b). Effects of pH on heavy metal sorption on mineral apatite. Environmental Science and Technology, 31(3), 624–631.

    Article  CAS  Google Scholar 

  • Chen, S. B., Zhu, Y. G., & Ma, Y. B. (2006). The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, 134(1–3), 74–79.

    Article  CAS  Google Scholar 

  • Cheng, S., & Hseu, Z. (2002). In-situ immobilization of cadmium and lead by different amendments in two contaminated soils. Water, Air, and Soil pollution, 140, 73–84.

    Article  CAS  Google Scholar 

  • Chigbo, C. H., & Batty, L. (2014). Phytoremediation for co-contaminated soils of chromium and benzo[a] pyrene using Zea mays L. Environmental Science and Pollution Research, 21(4), 3051–3059. doi:10.1007/s11356-013-2254-0.

    Article  CAS  Google Scholar 

  • Choppala, G. K., Bolan, N. S., Megharaj, M., Chen, Z., & Naidu, R. (2012). The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Journal of Environmental Quality, 41, 1175–1184.

    Article  CAS  Google Scholar 

  • Cho-Ruk, K., Kurukote, J., Supprung, F., & Vetayasuporn, S. (2006). Perennial Plants in the phytoremediation of lead contaminated soils. Biotechnology, 5(1), 1–4.

    Article  CAS  Google Scholar 

  • Cocârt, D. M., Dinu, R. N., Dumitrescu, C., Reşetar-Deac, A. M., & Tanasiev, V. (2013). Risk-based approach for thermal treatment of soils contaminated with heavy metals. E3S Web of Conferences 1, 01005.

  • Contin, M., Mondini, C., Leita, L., & Nobili, M. D. (2007). Enhanced soil toxic metal fixation in iron (hydr) oxides by redox cycles. Geoderma, 140(1–2), 164–175.

    Article  CAS  Google Scholar 

  • De Kreuk, J. F. (2005). Advantages of in situ remediation of polluted soil and practical problems encountered during its performance. In I. V. Perminova et al. (Eds.), Use of humic substances to remediate polluted environments: From theory to practice. The Netherlands: Springer.

    Google Scholar 

  • Deliyanni, E. A., Lazaridis, N. K., Peleka, E. N., & Matis, K. A. (2004). Metals removal from aqueous solution by iron-based bonding agents. Environmental Science and Pollution Research, 11(1), 18–21.

    Article  CAS  Google Scholar 

  • Dellisanti, F., Rossi, P. L., & Valdrè, G. (2009). Remediation of asbestos containing materials by Joule heating vitrification performed in a pre-pilot apparatus. International Journal of Mineral Processing, 91, 61–67.

    Article  CAS  Google Scholar 

  • Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3–4), 377–394.

    Article  Google Scholar 

  • Devasena, M., & Nambi, I. M. (2013). In situ stabilization of entrapped elemental mercury. Journal of Environmental Management, 130, 185–191. doi:10.1016/j.jenvman.2013.08.066.

    Article  CAS  Google Scholar 

  • Dijk, P., & Berkowitz, B. (1998). Precipitation and dissolution of reactive solutes in fractures. Water Resources Research, 34(3), 457–470.

    Article  CAS  Google Scholar 

  • Donlon, D. L., & Bauder, J. W. (2008). A general essay on bioremediation of contaminated Soil. Accessed July 22, 2013. http://waterquality.montana.edu/docs/methane/Donlan.shtml.

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous ferric oxide. New York, NY: Wiley.

    Google Scholar 

  • Elliot, H. A., Liberati, M. R., & Huang, C. P. (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 3, 214–219. doi:10.2134/jeq1986.00472425001500030002x.

    Article  Google Scholar 

  • Embren, B. (2016). Planting urban with biochar. The Biochar Journal. https://www.biochar-journal.org/en/ct/77.

  • EPA. (1991). United States Environmental Protection Agency, Treatment of Lead-Contaminated Soils, Superfund Engineering Issue, 540/2-91/009.

  • EPA. (1996). Recent developments for in situ treatment of metal contaminated soils. Prepared for: U.S. Environmental Protection Agency, Office of solid waste and emergency response. Technology Innovation Office, Washington, DC.

  • EPA. (2001). Use of bioremediation at superfund sites. Solid waste and emergency response (5102G). U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC, 20460.

  • EPA. (2002). United state Environmental protection agency, Arsenic treatment technologies for soil, water and waste, NSCEP. EPA-542-R-02-004.

  • EPA. (2007). The use of soil amendments for remediation, revitalization, and reuse. Environmental Protection Agency, United States. EPA 542-R-07-013.

  • ESTCP. (2000). Environmental security technology certification program. In-situ electrokinetic remediation of metal contaminated soils technology status report, US Army Environmental Center Report Number; SFIM-AEC-ET-CR-99022.

  • Ettler, V. T., Omášová, Z., Komárek, M., Mihaljevič, M., Šebek, O., & Michálková, Z. (2015). The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: Implication for chemical stabilization of metals and metalloids. Journal of Hazardous Materials, 268, 386–394. doi:10.1016/j.jhazmat.2015.01.018.

  • Faisal, I., Tahir, H., & Ramzi, H. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95–122.

    Google Scholar 

  • Fan, M., Boonfueng, T., Xu, Y., Axe, L., & Tyson, T. A. (2005). Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. Journal of Colloid and Interface Science, 281(1), 39–48.

    Article  CAS  Google Scholar 

  • FAQs. (2012). Bioremedial cleaning products for a cleaner, Greener Planet. Environmental Solution, Inc. http://www.totalbiosolution.com/index.php/freqently-asked-guestions.

  • Frankenberger, W. T., & Arshad, M. (2001). Bioremediation of selenium-contaminate sediments and water. BioFactors, 14(1–4), 241–254.

    Article  CAS  Google Scholar 

  • FRTR. (1999). In situ solidification/stabilization. Federal Remediation Technologies Roundtable. USEPA, S.W., Washington, DC. http://www.frtr.gov/matrix2/section4/4_10.html.

  • Garau, G., Castaldi, P., Santona, L., Deiana, P., & Melis, P. (2007). Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142(1–2), 47–57.

    Article  CAS  Google Scholar 

  • Gascó, G., Paz-Ferreiro, J., & Méndez, A. (2012). Thermal analysis of soil amended with sewage sludge and biochar from sewage sludgepyrolysis. Journal of Thermal Analaysis and Calorimetry, 108(2), 769–775. doi:10.1007/s10973-011-2116-2.

    Article  CAS  Google Scholar 

  • Geebelen, W., Adriano, D. C., Van der Lelie, D., Mench, M., Carleer, R., Clijsters, H., et al. (2003). Selected bioavailability assays to test the effect of amendment-induced immobilization of lead in soils. Plant and Soil, 49(1), 17–228. doi:10.1023/A:1022534524063.

    Article  Google Scholar 

  • Giannis, A., Gidarakos, E., & Skouta, A. (2007). Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Desalination, 211(1–3), 249–260.

    Article  CAS  Google Scholar 

  • Gray, C. W., McLaren, R. G., & Roberts, A. H. C. (2003). Atmospheric accessions of heavy metals to some New Zealand pastoral soils. Science of the Total Environment, 305(1–3), 105–115.

    Article  CAS  Google Scholar 

  • Grimm, N. B., Foster, D., Groffman, P., Grove, J. M., Hopkinson, C. S., Nadelhof-fer, K. J., et al. (2008). The changing landscape: ecosystem responses tourbanization and pollution across climatic and societal gradients. Frontiers in Ecology and Environment, 6(5), 264–272. doi:10.1890/070147.

    Article  Google Scholar 

  • Grobbel, L., & Wang, Z. (2012). A review of stabilization/solidification (S/s) technology for waste soil remediation. The International Information Center for Geotechnical Engineers. Accessed December 15, 2013. http://www.geoengineer.org/education/web-based-class-projects/geoenvironmental-remediationtechnologies/stabilization-solidification?showall=1&limitstart=.

  • Guo, H., Luo, S. H., Chen, L., Xiao, X., Xi, Q., Wei, W., et al. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599–8605. doi:10.1016/j.biortech.2010.06.085.

    Article  CAS  Google Scholar 

  • Hakeem, K. R., Sabir, M., Ozturk, M., & Murmet, A. (2014). Soil remediation and plants. In W. Ahmad, U. Najeeb & M. H. Zia (Eds.), Soil contamination with metals: Sources, types and implications. Prospects and Challenges (pp. 37–254). London: Academic Press.

  • Hale, B., Evans, L., & Lambert, R. (2012). Effects of cement or lime on Cd Co, Cu, Ni, Pb, Sb and Zn mobility infield-contaminated and aged soils. Journal of Hazardous Materials, 199–200, 119–127. doi:10.1016/j.jhazmat.2011.10.065.

    Article  CAS  Google Scholar 

  • Hartley, W., & Lepp, N. W. (2008). Remediation of arsenic contaminated soils by ironoxide application evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Science of the Total Environment, 390(1), 35–44.

    Article  CAS  Google Scholar 

  • Hassinen, V., Vallinkoski, V. M., Issakainen, S., Tervahauta, A., Kärenlampi, S., & Servomaa, K. (2009). Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula × tremuloides) grown in contaminated soil. Environmental Pollution, 157, 922–930.

    Article  CAS  Google Scholar 

  • Hodson, M. E., Valsami-Jones, E., & Cotter-Howells, J. D. (2000). Bone meal additions as a remediation treatment for metal contaminated soil. Environmental Science and Technology, 34(16), 3501–3507. doi:10.1021/es990972a.

    Article  CAS  Google Scholar 

  • Hong, C. O., Lee, D. K., Chung, D. Y., & Kim, P. J. (2007). Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Archives of Environmental Contamination and Toxicology, 52, 496–502.

    Article  CAS  Google Scholar 

  • Hong, C. O., Lee, D. K., & Kim, P. J. (2008). Feasibility of phosphate fertilizer to immobilize cadmium in a field. Chemosphere, 70, 2009–2015.

    Article  CAS  Google Scholar 

  • Houben, D., Pircar, J., & Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. Journal of Geochemical Exploration, 123, 87–94. doi:10.1016/j.gexplo.2011.10.004.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y., Huang, Y. T., & His, H. C. (2014). Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury. Journal of the Air and Waste Management Association, 64(9), 1013–1020.

    Article  CAS  Google Scholar 

  • Hsu, N. H., Wang, S. L., Lin, Y. C., Sheng, G. D., & Lee, J. F. (2009). Reduction of Cr(VI) by crop residue-derived black carbon. Environmental Science and Technology, 43, 8801–8806.

    Article  CAS  Google Scholar 

  • Hu, J., Chen, G. H., & Lo, I. M. C. (2005). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 39(18), 4528–4536. doi:10.1016/j.watres.2005.05.051.

    Article  CAS  Google Scholar 

  • Hu, J., Chen, G. H., & Lo, I. M. C. (2006). Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms. Journal of Environmental Engineering, 132, 709–715.

    Article  CAS  Google Scholar 

  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of the Hazardous Materials, 211, 317–331. doi:10.1016/j.jhazmat.2011.10.016.

    Article  CAS  Google Scholar 

  • Hytiris, N., Fotis, P., Stavraka, T. D., Bennabi, A., & Hamzaoui, R. (2015). Leaching and mechanical behaviour of solidified/stabilized nickel contaminated soil with cement and geosta, I. International Journal of Environmental Pollution and Remediation, 3, 1–8. doi:10.11159/ijepr.2015.001.

    Article  CAS  Google Scholar 

  • Illera, V., Garrido, F., Serrano, S., & Garcia-Gonzalez, M. (2004). Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and limerich industrial by-products. European Journal of Soil Science, 55(1), 135–145. doi:10.1046/j.1365-2389.2003.00583.x.

    Article  CAS  Google Scholar 

  • Iskandar, I. K. (2001). Environmental restoration of metals-contaminated soils. TD 87.M47 E58, pp. 218–219.

  • Iskandar, I. K., & Adriano, D. C. (1997). Remediation of soils contaminated with metals. A review of current practices. In I. K. Iskandar & D. C. Adriano (Eds.), Remediation of soils contaminated with metals, science reviews (pp. 1–26). Northwood, NY: CRC Press.

    Google Scholar 

  • Joseph, S., Husson, O., Graber, E. R., van Zwieten, L., Taherymoosavi, S., Thomas, T., et al. (2015). The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy, 5(3), 322–340.

    Article  CAS  Google Scholar 

  • Juris, B., Karina, S., Ikrema, H., Reinis, J., & Sandris, L. (2015). Removal of heavy metals from contaminated soils by electrokinetic remediation. Academia.edu, e-mail: juris@geo-it.lv, imohame5@uwo.ca.

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace metals in soils and plants. Boca Raton, FL: CRC Press (Ed.3). Visit the CRC Press Web site at www.crcpress.com.

  • Kanabo, I. A. K., & Gilkes, R. (1987). The role of soil pH in the dissolution of phosphate rock fertilizers. Fertilizer Research Journal, 12, 165–174.

    Article  CAS  Google Scholar 

  • Kashem, M. A., & Singh, B. R. (2001). Metal availability in contaminated soil: II. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition. Nutrient Cyclic Agroecosystems, 61(3), 257–266. doi:10.1023/A:1013724521349.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2004). Application of biological processes for the removal of arsenic from groundwaters. Water Research, 38, 17–26.

    Article  CAS  Google Scholar 

  • Ko, I. W., Lee, C. H., Lee, K. P., Lee, S. W., & Kim, K. W. (2006). Remediation of soil contaminated with arsenic, zinc, and nickel by pilot-scale soil washing. Environmental Progress, 25(1), 39–48.

    Article  CAS  Google Scholar 

  • Koretsky, C. (2000). The significance of surface complexation reactions in hydrologic systems: a geochemist’s perspective. Journal of Hydrology, 230(3–4), 127–171. doi:10.1016/S0022-1694(00)00215-8.

    Article  CAS  Google Scholar 

  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 10(7), 263–283.

    Article  Google Scholar 

  • Kumpiene, J. (2010). Trace element immobilization in soil using amendments. In P. Hooda (Ed.), Trace elements in soils (pp. 353–380). Wiltshire: Wiley.

    Chapter  Google Scholar 

  • Kumpiene, J., Guerri, G., Landi, L., Pietramellara, G., Nannipieri, P., & Renella, G. (2009). Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicology and Environmental Safety, 72(1), 115–119. doi:10.1016/j.ecoenv.2008.07.002.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium copper, and arsenic in soil. Environmental Pollution, 144(1), 62–69. doi:10.1016/j.envpol.2006.01.010.

    Article  CAS  Google Scholar 

  • Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-situ remediation technologies for environmental pollutants: A critical perspective. In P. de Voogt (Ed.), Reviews of environmental contamination and toxicology (Vol. 236). Switzerland: Springer. doi:10.1007/978-3-319-20013-2_2.

  • Kurniati, E., Arfarita, N., Imai, T., Higuchi, T., Kanno, A., Yamamoto, K., et al. (2014). Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. Journal of Environmental Sciences, 26(6), 1223–1231. doi:10.1016/S1001-0742(13)60592-6.

    Article  CAS  Google Scholar 

  • Kwiatkowska, J., DĊbska, B., Maciejewska, A., & Gonet, S. (2005). Brown coal as the factor forming the properties of soil organic matter. Roczniki Gleboznawcze Tom LVI NR, 3(4), 31–41.

    Google Scholar 

  • Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Material, 171, 1150–1158.

    Article  CAS  Google Scholar 

  • Laperche, V., Traina, S. J., Gaddam, P., & Logan, T. J. (1996). Chemical and mineralogical characterizations of Pb in a contaminated soil: Reactions with synthetic apatite. Environmental Science and Technology, 30, 3321–3326.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  Google Scholar 

  • Lee, S. H., Lee, J. S., Choi, Y. J., & Kim, J. G. (2009). In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 77(8), 1069–1075. doi:10.1016/j.chemosphere.2009.08.056.

    Article  CAS  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. B. (2011). Biochar effects on soil biota. A review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    Article  CAS  Google Scholar 

  • Li, Z., & Zhang, T. (2013). Vitrification, The International Information Center for Geotechnical Engineers. http://www.geoengineer.org/education/web-based-class-projects/geoenvironmental-remediation-technolog-ies/vitrification?showall=1&limitstart=.

  • Li, J., Zhang, G. N., & Li, Y. (2010). Review on the remediation technologies of POPs. Hebei Environmental Science, 65(8), 1295–1299.

    Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York, NY: Wiley.

    Google Scholar 

  • Liu, W., Wei, D., Mi, J., Shen, Y., Cui, B., & Han, C. (2015). Immobilization of Cu(II) and Zn(II) in simulated polluted soil using sulfurizing agent. Chemical Engineering Journal, 277, 312–317.

    Article  CAS  Google Scholar 

  • Lodolo, A. (2014). Ex situ treatment technologies, EUGRIS: Portal for soil and water management in Europe. Accessed October 12, 2014. http://www.eugris.info/FurtherDescription.asp?Ca=2&Cy=0&T=Ex+situ+treatment+technologies&e=25.

  • Loganathan, P., Hedley, M. J., & Grace, N. D. (2008). Pasture soils contaminated with fertilizer derived cadmium and fluoride: Livestock effects. Reviews of Environmental Contamination and Toxicology, 192, 29–66.

  • Lu, H., Zhang, Y. Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46(3), 854–862. doi:10.1016/j.watres.2011.11.058.

    Article  CAS  Google Scholar 

  • Luo, Q. S., Zhang, X. H., & Wang, H. (2004). Mobilization of 2,4-dichlorophenol in soils by non-uniform electrokinetics. Acta Scientiae Circumstantiae, 24, 1104–1109.

    CAS  Google Scholar 

  • Lv, L. L., Jin, M. Y., & Li, B. W. (2009). Study on remediation of the soil contaminated with cadmium by applying four minerals. Journal of Agricultural University of Hebei, 32, 1–5.

    Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579. doi:10.1038/35054664.

  • Ma, L. Q., & Rao, G. N. (1997). Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils. Journal of Environmental Quality, 26, 788–794.

    Article  CAS  Google Scholar 

  • Macdonald, J. E., & Veinot, J. G. C. (2008). Removal of residual metal catalysts with iron/iron oxide nanoparticles from coordinating environments. Langmuir, 24, 7169–7177. doi:10.1021/la8006734.

    Article  CAS  Google Scholar 

  • Mahimairaj, S., Bolan, N. S., Adriano, D., & Robinson, B. (2005). Arsenic contamination and its risk management in complex environmental settings. Advanced Agronomy, 86, 1–82.

    Article  Google Scholar 

  • Maity, J. P., Huang, Y., Fan, C. W., Chen, C. C., Li, C. Y., Hsu, C. M., et al. (2013). Evaluation of remediation process with soapberry derived saponin for removal of heavy metals from contaminated soils in Hai-Pu. Taiwan. Journal of Environmental Sciences, 25(6), 1180–1185.

    Article  CAS  Google Scholar 

  • Makino, T., Kamiya, T., Takano, H., Itou, T., Sekiya, N., Sasaki, K., et al. (2007). Remediation of cadmium-contaminated paddy soils by washing with calcium chloride—Verification of on-site washing. Environmental Pollution, 147(1), 112–119. doi:10.1016/j.envpol.2006.01.017.

    Article  CAS  Google Scholar 

  • Manceau, A., Charlet, L., Boisset, M. C., Didier, B., & Spadini, L. (1992). Sorption and speciation of heavy metals on hydrous Fe and Mn oxides, From microscopic to macroscopic. Applied Clay Science, 7(1–3), 201–223.

    Article  CAS  Google Scholar 

  • Marsz, A. M. (2014). Remediation of metal contaminated soils (evaluation of long-term effects of zero-valent iron amendments). Master’s thesis in environmental Science. EnvEuro-European Master in Environmental Science. http://stud.epsilon.slu.se.

  • Martin, T. A., & Ruby, M. V. (2004). Review of in situ remediation technologies for lead, zinc and cadmium in soil. Remediation Journal, 14, 35–53. doi:10.1002/rem.20011.

    Article  Google Scholar 

  • McGowen, S. L., Basta, N. T., & Brown, G. O. (2001). Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. Journal of Environmental Quality, 30, 493–500.

    Article  CAS  Google Scholar 

  • McLean, J. E., & Bledsoe, B. E. (1992). Behavior of metals in soils, EPA Ground Water Issue, EPA 540-S-92-018.

  • Means, J. L. (1995). The application of solidification/stabilization to waste materials. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Memon, A. R., Aktoprakligil, D., Ozdemir, A., & Vertii, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany, 25, 111–121.

    Google Scholar 

  • Memon, A. R., & Schröder, P. I. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16, 162–175.

    Article  CAS  Google Scholar 

  • Moon, D. H., Grubb, D. G., & Reilly, T. L. (2009). Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust. Journal of Hazardous Materials, 168(2–3), 944–951. doi:10.1016/j.jhazmat.2009.02.125.

    Article  CAS  Google Scholar 

  • Muddarisna, N., Krisnayanti, B. D., Utami, S. R., & Handayanto, E. (2013). Phytoremediation of Mercury-contaminated soil using three wild plant species and its effect on maize growth. Applied Ecology and Environmental Sciences, 1(3), 27–32. doi:10.12691/aees-1-3-1.

    Article  CAS  Google Scholar 

  • Myneni, S. C. B., Tokunaga, T. K., & Brown, J. (1997). Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science, 278, 1106–1109.

    Article  CAS  Google Scholar 

  • Naidu, R., Kookana, R. S., Sumner, M. E., Harter, R. D., & Tiller, K. G. (1997). Cadmium sorption and transport in variable charge soils: A review. Journal of Environmental Quality, 26, 602–617.

    Article  CAS  Google Scholar 

  • Naseri, E., Reyhanitabar, A., Oustan, S., Heydari, A. A., & Alidokht, L. (2014). Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology. Geoderma, 232–234, 547–555.

    Article  CAS  Google Scholar 

  • Navarro, A., Cardellach, E., Cañadas, I., & Rodríguez, J. (2013). Solar thermal vitrification of mining contaminated soils. International Journal of Mineral Processing, 119, 65–74.

    Article  CAS  Google Scholar 

  • Nordmark, D., Kumpiene, J., Andreas, L., & Lagerkvist, A. (2011). Mobility and fractionation of arsenic, chromium and copper in thermally treated soil. Waste Management and Research, 29(1), 3–12. doi:10.1177/0734242X10382819.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1974). Lead Orthophosphates. IV—Formation and stability in the environment. Geochimica et Cosmochimica Acta, 38, 887–898.

    Article  CAS  Google Scholar 

  • O’Loughlin, E. J., Kelly, S. D., Kemner, K. M., Csencsits, R., & Cook, R. E. (2003). Reduction of Ag I, Au III, Cu II, and Hg II by Fe II/Fe III hydroxysul fate green rust. Chemosphere, 53, 437–446.

    Article  CAS  Google Scholar 

  • Ok, Y. S., Lim, J. E., & Moon, D. H. (2011). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry and Health, 33, 83–91.

    Article  CAS  Google Scholar 

  • Olegario, J., Yee, N., Miller, M., Sczepaniak, J., & Manning, B. (2010). Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. Journal of Nanoparticle Research, 12, 2057–2068.

    Article  CAS  Google Scholar 

  • Ottosen, L. M., Jensena, P. E., Kirkelunda, G. M., Ferreira, C. D., & Hansen, H. K. (2012). Electrodialytic remediation of heavy metal polluted soil—Treatment of water saturated or suspended soil. Chemical Engineering Transactions, 28, 103–108.

    Google Scholar 

  • Ouhadi, V. R., Yong, R. N., Shariatmadari, N., Saeidijama, S. A., Goodarzi, R., & Safari-Zanjani, M. (2010). Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. Journal of Hazardous Materials, 173(1–3), 7–94.

    Google Scholar 

  • Ou-Yang, X., Chen, J. W., & Zhang, X. G. (2010). Advance in supercritical CO2 fluid extraction of contaminants from soil. Geological Bulletin of China, 29(11), 1655–1661.

    CAS  Google Scholar 

  • Pare, J. (2006). In-situ and ex situ soil and groundwater remediation using chemical oxidation technologies. CHEMCO, Solutions and Environmental Products Waters-Soils-Air.

  • Park, J. H., Bolan, N. S., Chung, J. W., & Naidu, R. (2010). Isolation of phosphate-solubilizing bacteria and characterization of their effects on lead immobilization. Journal of Hazardous Material, 185, 829–836.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439–451.

    Article  CAS  Google Scholar 

  • Park, J., Jung, Y., Han, M., & Lee, S. (2002). Simultaneous removal of cadmium and turbidity in contaminated soil-washing water by DAF and electroflotation. Water Science and Technology, 46(11–12), 225–230.

    Article  Google Scholar 

  • Paz-Ferreiro, J., & Fu, S. (2014). Biological indices for soil quality evaluation: Perspectives and limitations. Land Degrad. Dev. Published online in Wiley Online Library (wileyonlinelibrary.com). doi:10.1002/ldr.2262doi.

  • Pearson, M. S., Maenpaa, K., Pierzynski, G. M., & Lydy, M. J. (2000). Effects of soil amendment on the bioavailbility of lead, zink and cadmium to earthworms. Journal of Environmental Quality, 29(5), 1611–1617. doi:10.2134/jeq2000.00472425002900050031x.

    Article  CAS  Google Scholar 

  • Pierzynski, G. M., Sims, J. T., & Vance, G. F. (2000). Soils and environmental quality (2nd ed., p. 584). London: CRC Press.

    Google Scholar 

  • Pinto, A. P., Mota, A. M., de Varennes, A., & Pinto, F. C. (2004). Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment, 326(1–3), 239–247.

    Article  CAS  Google Scholar 

  • Porter, S. K., Scheckel, K. G., Impellitteri, C. A., & Ryan, J. A. (2004). Toxic metals in the environment: Thermodynamic considerations for possible immobilisation strategies for Pb, Cd, As, and Hg. Critical Review in Environmental Science and Technology, 34(6), 495–604.

    Article  CAS  Google Scholar 

  • Qian, S. Q., & Liu, Z. (2000). An overview of development in the soil-remediation technologies. Chemical Industrial and Engineering Process, 4(10–2), 20.

    Google Scholar 

  • Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41, 935–944.

    CAS  Google Scholar 

  • Ramalingam, V. (2013). Electrokinetic remediation—Disadvantages. The International Information Center for geotechnical engineers. http://www.geoengineer.org/education/web-based-classprojects/geoenviro-nmental-remediation-technologies/electrokinetic-remediation?start=6.

  • Reddy, K. R. (2009). Electrokinetical remediation technologies for polluted soils, sediments and groundwater (pp. 324–325). Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Reddy, K. R., Chaparro, C., & Saichek, R. E. (2003). Removal of mercury from clayey soils using electrokinetics. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances and Environmental Engineering, 38(2), 307–338.

  • Refait, P., Simon, L., & Génin, J. M. R. (2000). Reduction of SeO4 2− anions and anoxic formation of iron(II)–iron(III) hydroxy selenate green rust. Environmental Science and Technology, 34, 819–825.

    Article  CAS  Google Scholar 

  • Ren, W. X., Li, P. J., Geng, Y., & Li, X. J. (2009). Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. Journal of Hazardous Materials, 167(1–3), 164–169.

    Article  CAS  Google Scholar 

  • Renholds, J. (1998). In situ treatment of contaminated sediments. Prepared for U.S. Environmental Protection Agency. Accessed March 9, 2014. http://clu-in.org/products/intern/renhold.htm.

  • Ricou-Hoeffer, P., Hequet, V., Lecuyer, I., & Le Cloirec, P. (2000). Adsorption and stabilization of nickel ions on fly ash/lime mixing. Water Science and Technology, 42, 79–84.

    Article  CAS  Google Scholar 

  • Ritchie, G. S. P. (1994). Role of dissolution and precipitation of minerals in controlling soluble aluminum in acidic soil. http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1014&context=fsn_fac.

  • Ruttens, A., Colpaert, J., Mench, M., Boisson, J., Carleer, R., & Vangronsveld, J. (2006). Phytostabilization of a metal contaminated sandy soil. II. Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environmental Pollution, 144(2), 533–539.

    Article  CAS  Google Scholar 

  • Sauge-Merle, S., Lecomte-Pradines, C., Carrier, P., Cuiné, S., & DuBow, M. (2012). Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure. Chemosphere, 88(8), 918–924.

    Article  CAS  Google Scholar 

  • Schindler, P. W., Fürst, B., Dick, R., & Wolf, P. U. (1976). Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+. Journal of Colloid and Interface Science, 55(2), 469–475.

    Article  CAS  Google Scholar 

  • Schott, J., Pokrovsky, O., & Oelkers, E. (2009). The link between mineral dissolution/precipitation kinetics and solution chemistry. The Mineralogical Society of America, 70, 207–258.

  • Shen, Z. G., & Chen, H. M. (2000). Bioremediation of heavy metal polluted soils. Rural Eco-Environment, 16(2), 39–44.

    Google Scholar 

  • Sherwood, L. J., & Qualls, R. G. (2001). Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environmental Science and Technology, 35(20), 4126–4131.

    Article  CAS  Google Scholar 

  • Shulgin, A. I., & Hagerty, D. J. (2008). Immobilizing arsenic in contaminated soil using humic mineral concentrates. GeoCongress (Geotechnics of Waste Management and Remediation), 812–818. doi:10.1061/40970%28309%29102.

  • Shuman, L. M. (1991). Chemical forms of micronutrients in soils. In J. J. Mortvedt, F. R. Cox, L. M. Shuman, & R. M. Welch (Eds.), Micronutrients in agriculture (pp. 113–144). Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Silveira, M. L. A., Alleoni, L. R. F., & Guilherme, L. R. G. (2003). Review: Biosolids and heavy metals in soils. Scientia Agricola, 60, 793–806.

    Article  CAS  Google Scholar 

  • Skáodowski, P., Maciejewska, A., & Kwiatkowska, J. (2006). The effect of organic matter from brown coal on bioavailability of heavy metals in contaminated soils. Soil and Water Pollution Monitoring, Protection and Remediation, 69, 3–23.

    Article  Google Scholar 

  • Sneddon, I. R., Orueetxebarria, M., Hodson, M. E., Schofield, P. F., & Valsami-Jones, E. (2006). Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: A leaching column study. Environmental Pollution, 144(3), 816–825.

    Article  CAS  Google Scholar 

  • Sposito, G. (1984). The surface chemistry of soils. New York, NY: Oxford University Press.

    Google Scholar 

  • Srivastavaa, S. H., & Thakur, I. S. (2006). Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biology and Biochemistry, 38(7), 1904–1911.

    Article  CAS  Google Scholar 

  • Stegmann, R., Brunner, G., Calmano, W., & Matz, G. (2001). Treatment of contaminated soil: Fundamentals, analysis, applications. Berlin: Springer.

    Book  Google Scholar 

  • Tampouris, S., Papassiopi, N., & Paspaliaris, I. (2001). Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. Journal of Hazardous Material, 84(2–3), 297–319.

    Article  CAS  Google Scholar 

  • Tang, X., Li, X., Liu, X., Hashim, M. Z., Xu, J., & Brookes, P. C. (2014). Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere, 119, 177–183.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology (pp. 133–164). Berlin: Springer.

  • Terry, N., & Banuelos, G. (2000). Phytoremediation of contaminated soils and water. USA: CRC Press.

    Google Scholar 

  • Todorovic, Z. B., Randelovic, L. M., Marjanovic, J. Z., Todorovic, V. M., Cakic, M. D., & Cvetkovic, O. G. (2014). The assessment and distribution of heavy metals in surface sediments from the reservoir “Barje” (Serbia). Advanced Technologies, 3(2), 85–95.

    Google Scholar 

  • Tokunaga, S., & Hakuta, T. (2002). Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere, 46, 31–38.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials, 190(1–3), 432–441.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80(8), 935–940.

    Article  CAS  Google Scholar 

  • USDA. (1999). Liming to improve soil quality in acidic soils. Soil Quality-Agronomy Technical Note No. 8. United State Department of Agriculture.

  • USEPA. (1990). Interference mechanisms in waste stabilization/solidification processes. Tech. Rep. EPA/540/A5-89/004, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.

  • USEPA. (1996). Innovative treatment technologies, annual status report, 8th edn. EPA/542/R-96/010, USEPA, Washington, DC.

  • USEPA. (1997). Recent developments for in situ treatment of metal contaminated soils. Tech. Rep. EPA-542-R-97-004, USEPA, Washington, DC, USA.

  • USEPA. (2012). Solidification, from contaminated sites clean-up information. Accessed May 23, 2014. http://www.cluin.org/techfocus/default.focus/sec/Solidification/cat/Overview/.

  • van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362, 319–334.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Colpaert, J. V., & Van Tichelen, K. K. (1996). Reclamation of a bare industrial area contaminated by non-ferrous metals: Physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environmental Pollution, 94(2), 131–140.

    Article  CAS  Google Scholar 

  • Vasile Pavel, L., & Gavrilescu, M. (2008). Overview of ex situ decontamination techniques for soil cleanup. Environmental Engineering and Management Journal, 7(6), 815–834.

    Article  Google Scholar 

  • Wang, L. K., Vaccari, D. A., Li, Y., & Shammas, N. K. (2005). Chemical precipitation. In L. K. Wang, Y. T. Hung, & N. K. Shammas (Eds.), Physicochemical treatment processes (pp. 141–197). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Wang, L., Yuan, X., Zhong, H., Wang, H., Wu, Z., Chen, X., et al. (2014). Release behavior of heavy metals during treatment of dredged sediment by microwave-assisted hydrogen peroxide oxidation. Chemical Engineering Journal, 258, 334–340.

    Article  CAS  Google Scholar 

  • Wang, J., Zheng, S., Shao, Y., Liu, Z., Xu, J., & Zhu, D. (2010). Amino-functionalized Fe3O4&SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of Colloid and Interface Science, 349(1), 293–299.

    Article  CAS  Google Scholar 

  • Whitacre, D. M. (2013). Reviews of environmental contamination and toxicology. New York Heidelberg, Dordrecht, London: Springer.

    Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of degraded soils with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780.

    Article  CAS  Google Scholar 

  • Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., et al. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268–276.

    Article  CAS  Google Scholar 

  • Wuana, R. A., Okieimen, F. E., & Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science and Technology, 7(3), 485–496.

    Article  CAS  Google Scholar 

  • Yao, Z., Lib, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. The 7th international conference on waste management and technology. Procedia Environmental Sciences, 16, 722–729.

    Article  CAS  Google Scholar 

  • Yu-Ling, W. (2012). Thermal immobilization of lead contaminants in soils treated in a fixed- and fluidized-bed incinerator at moderate temperatures. Journal of the Air and Waste Management Association, 45(6), 422–429. doi:10.1080/10473289.1996.10467475.

    Article  Google Scholar 

  • Zaman, M. I., Mustafa, S., Khan, S., & Xing, B. (2009). Effect of phosphate complexation on Cd2+ sorption by manganese dioxide (b-MnO2). Journal of Colloid and Interface Science, 330(1), 9–19. doi:10.1016/j.jcis.2008.10.053.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Frankenberger, W. T. (2003). Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Science of the Total Environment, 305, 207–216.

    Article  CAS  Google Scholar 

  • Zhang, X. H., Wang, H., & Luo, Q. S. (2001). Electrokinetics in remediation of contaminated groundwater and soils. Advances in Water Resources, 12(2), 249–255.

    CAS  Google Scholar 

  • Zhang, T., Zou, H., Ji, M., Li, X., Li, L., & Tang, T. (2014). Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environmental Science and Pollution Research, 21(4), 3126–3133.

    Article  CAS  Google Scholar 

  • Zhao, Z., Jiang, G., & Mao, R. (2014). Effects of particle sizes of rock phosphate on immobilizing heavy metals in lead zinc mine soils. Journal of Soil Science and Plant Nutrition, 14(2), 258–266.

    CAS  Google Scholar 

  • Zhou, D. M., Hao, X. Z., & Xue, Y. (2004). Advances in remediation technologies of contaminated soils. Ecology and Environmental Science, 13(2), 234–242.

    Google Scholar 

  • Zhou, H., Zhou, X., Zeng, M., Liao, B. H., Liu, L., Yang, W. T., et al. (2014). Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicology and Environmental Safety, 101, 226–232.

    Article  CAS  Google Scholar 

  • Zhu, J., Cozzolino, V., Fernandez, M., Sánchez, R. M. T., Pigna, M., Huang, Q., et al. (2011a). Sorption of Cu on a Fe-deformed montmorillonite complex: Effect of pH, ionic strength, competitor heavy metal, and inorganic and organic ligands. Applied Clay Science, 52(4), 339–344.

    Article  CAS  Google Scholar 

  • Zhu, J., Pigna, M., Cozzolino, V., Caporale, A. G., & Violante, A. (2011b). Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands. Journal of Hazardous Materials, 189(1–2), 564–571.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KHK acknowledges support made in part by grants from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1E1A1A01940995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Chae Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derakhshan Nejad, Z., Jung, M.C. & Kim, KH. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40, 927–953 (2018). https://doi.org/10.1007/s10653-017-9964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9964-z

Keywords

Navigation