Skip to main content
Log in

Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A greenhouse experiment was carried out to investigate the single effect of benzo[a]pyrene (B[a]P) or chromium (Cr) and the joint effect of Cr–B[a]P on the growth of Zea mays, its uptake and accumulation of Cr, and the dissipation of B[a]P over 60 days. Results showed that single or joint contamination of Cr and B[a]P did not affect the plant growth relative to control treatments. However, the occurrence of B[a]P had an enhancing effect on the accumulation and translocation of Cr. The accumulation of Cr in shoot of plant significantly increased by ≥ 79 % in 50 mg kg−1 Cr–B[a]P (1, 5, and 10 mg kg−1) treatments and by ≥ 86 % in 100 mg kg−1 Cr–B[a]P (1, 5, and 10 mg kg−1) treatments relative to control treatments. The presence of plants did not enhance the dissipation of B[a]P in lower (1and 5 mg kg−1) B[a]P contaminated soils; however, over 60 days of planting Z. mays seemed to enhance the dissipation of B[a]P by over 60 % in 10 mg kg−1 single contaminated soil and by 28 to 41 % in 10 mg kg−1B[a]P co-contaminated soil. This suggests that Z. mays might be a useful plant for the remediation of Cr–B[a]P co-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babu A, Kim J, Oh B (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483

    Article  Google Scholar 

  • Bareen FE, Nazir A (2010) Metal decontamination of tannery solid waste using Tagetes patula in association with saprobic and mycorrhizal fungi. Environmentalist 30:45–53

    Article  Google Scholar 

  • Barnhart J (1997) Occurrence, uses and properties of chromium. Regul Toxicol Pharmacol 26:s3–s7

    Article  CAS  Google Scholar 

  • Bonet A, Poschenrieder C, Barcelo J (1991) Chromium III-iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content. J Plant Nutr 14:403–414

    Article  CAS  Google Scholar 

  • Chen YX, Lin Q, He YF, Tian GM (2004) Behaviour of Cu and Zn under combined pollution of 2, 4- dichlorophenol in the planted soil. Plant Soil 261:127–134

    Article  CAS  Google Scholar 

  • Gheju M, Balcu M, Gopec M (2009) Analysis of hexavalent chromium uptake by plants in polluted soils. Ovidus Univ Ann Chem 20(1):127–131

    CAS  Google Scholar 

  • Han FX, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:189–199

    Article  Google Scholar 

  • Hossner L. R, Loeppert R. H, Newton R. J, Szaniszlo P. J and Attrep M (1998) Phytoaccumulation of chromium, uranium and plutonium in plant systems http://www.uraweb.org/reports/anrc9803.pdf. Accessed 21 Jan 2013

  • Jian Y, Yong L, Peter PF, Yu HT (2004) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res 557:99–108

    Article  Google Scholar 

  • Juhasz A, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Khan S, Aisun L, Zhang S, Hu Q, Zhu Y (2008) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term waste water irrigation. J Hazard Mater 152:506–515

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  Google Scholar 

  • Knight BP, McGrath SP, Chaudri AM (1997) Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl Environ Microbiol 63:39–43

    CAS  Google Scholar 

  • Li H, Luo YM, Song J, Wu LH, Christie P (2006) Degradation of benzo (a) pyrenein an experimental contaminated paddy soil by vetiver grass (Vetiveria zizanoides). Environ Geochem Health 28:183–188

    Article  CAS  Google Scholar 

  • Lin Q, Shen KL, Zhao HM, Li WH (2008) Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. J Hazard Mater 150:515–521

    Article  CAS  Google Scholar 

  • Lin Q, Wang ZW, Ma S, Chen YX (2006) Evaluation of dissipation mechanisms of Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368:814–822

    Article  CAS  Google Scholar 

  • Liu J, Zhou Q, Sun T, Ma L, Wang S (2008) Growth response of three ornamental plants to Cd and Cd-Pb stress and the metal accumulation characteristics. J Hazard Mater 151:261–267

    Article  CAS  Google Scholar 

  • Liu YT, Chen ZS, Hong CY (2011) Cadmium- induced physiological response and anti oxidant enzyme changes in the novel cadmium accumulator Tagetes patula. J Hazard Mater 189:724–731

    Article  CAS  Google Scholar 

  • Pandev V, Dixit V, Shyam R (2009) Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants. Protoplasma 235(1–4):49–55

    Article  Google Scholar 

  • Shankar AK, Cervantes C, Loza- Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  Google Scholar 

  • Shen GQ, Lu YT, Hong JB (2006) Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicol Environ Safety 63:474–480

    Article  CAS  Google Scholar 

  • Sun YB, Zhou QX, Diao CY (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Zu Y, Wang L, Liang X (2011) Phytoremediation for co- contaminated soils of benzo (a) pyrene and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186:2075–2082

    Article  CAS  Google Scholar 

  • Tappero R, Pleltier E, Grafe M, Heidel K, Ginder- Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alusum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    Article  CAS  Google Scholar 

  • Vazquez MD, Poschenrieder CH, Barcelo J (1987) Chromium Vi induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot 59:427–438

    CAS  Google Scholar 

  • Watts AW, Ballestero TP, Gardner KH (2006) Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62:1253–1260

    Article  Google Scholar 

  • Wilcock RJ, Corban GA, Northcott GL, Wilkins AL, Langdon AG (1996) Persistence of polycyclic aromatic compounds of different molecular size and water solubility in surfcial sediment of intertidal sand flat. Environ Toxicol Chem 15:670–676

    Article  CAS  Google Scholar 

  • Wild E, Dent J, Barber JL, Thomas GO, Jones KC (2004) A novel analytical approach for visualizing and tracking organic chemicals in plants. Environ Sci Technol 38:4195–4199

    Article  CAS  Google Scholar 

  • Wild SR, Jones KC (1993) Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge. Environ Toxicol Chem 12:5–12

    Article  CAS  Google Scholar 

  • Xing B, Pignatello JJ (1998) Competitive sorption between 1,3- dichlorobenzene or 2,4-dichlorophenol and natural aromatic acids in soil organic matter. Environ Sci Technol 32:614–619

    Article  CAS  Google Scholar 

  • Xu SY, Chen YX, Lin KF, Chen XC, Lin Q, Li F, Wang ZW (2009) Removal of pyrene from contaminated soils by white clover. Pedosphere 19:265–272

    Article  CAS  Google Scholar 

  • Yu X, Gu J, Xing L (2008) Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willow. Ecotoxicology 17:741–755

    Google Scholar 

  • Zayed AC, Lytle M, Qian J, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chibuike Chigbo.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chigbo, C., Batty, L. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L.. Environ Sci Pollut Res 21, 3051–3059 (2014). https://doi.org/10.1007/s11356-013-2254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-2254-0

Keywords

Navigation