Skip to main content
Log in

Characterizing instructor gestures in a lecture in a proof-based mathematics class

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

Researchers have increasingly focused on how gestures in mathematics aid in thinking and communication. This paper builds on Arzarello’s (2006) idea of a semiotic bundle and several frameworks for describing individual gestures and applies these ideas to a case study of an instructor’s gestures in an undergraduate abstract algebra class. We describe the role that the semiotic bundle plays in shaping the potential meanings of gestures; the ways gestural sets create complex relationships between gestures; and the role played by polysemy and abstraction. These results highlight the complex ways in which mathematical meanings—both specific and general—are expressed in gesture, and to highlight the integrated nature of elements of the semiotic bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alibali, M. W., & Nathan, M. J. (2007). Teachers’ gestures as a means of scaffolding students’ understanding: Evidence from an early algebra lesson. In R. Goldman, R. Pea, B. Barron, & S. J. Derry (Eds.), Video research in the learning sciences (pp. 349–365). Mahwah: Erlbaum.

    Google Scholar 

  • Alibali, M., & Nathan, M. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21, 247–286.

    Article  Google Scholar 

  • Alibali, M., Nathan, M., Wolfgram, M., Church, R. B., Jacobs, S., Johnson-Martinez, C., et al. (2014). How teachers link ideas in mathematics instruction using speech and gesture: A corpus analysis. Cognition and Instruction, 32(1), 65–100.

    Article  Google Scholar 

  • Alibert, D., & Thomas, M. (1991). Research on mathematical proof. In D. Tall (Ed.), Advanced mathematical thinking (pp. 215–230). Dordrecht: Kluwer.

    Google Scholar 

  • Anderson, J. R., Boyle, C. F., & Yost, G. (1986). The geometry tutor. Journal of Mathematical Behavior, 5, 5–19.

    Google Scholar 

  • Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latino Americana de Investigación en Matemática Educativa, Especial, 267–299.

  • Arzarello, F., & Paola, D. (2007). Semiotic games: The role of the teacher. In J. H. Woo, H. C. Lew, K. S. Park & D. Y. Soe (Ed.). Proceedings of the 31st conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 17–24). Seoul: PME.

  • Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the mathematics classroom. Educational Studies in Mathematics, 70, 97–109.

    Article  Google Scholar 

  • Bavelas, J. B. (1994). Gestures as part of speech: Methodological implications. Research on Language and Social Interaction, 27, 201–221.

    Article  Google Scholar 

  • Bavelas, J. B., Chovil, N., Coates, L., & Roe, L. (1995). Gestures specialized for dialogue. Personality and Social Psychology Bulletin, 21, 394–405.

    Article  Google Scholar 

  • Church, R. B., Ayman-Nolley, S., & Mahootian, S. (2004). The role of gesture in bilingual education: Does gesture enhance learning? International Journal of Bilingual Education & Bilingualism, 7(4), 303–320.

    Article  Google Scholar 

  • Cook, S. W., Duffy, R. G., & Fenn, K. M. (2013). Consolidation and transfer of learning after observing hand gesture. Child Development, 84(6), 1863–1871.

    Article  Google Scholar 

  • Edwards, L. D. (2009). Gestures and conceptual integration in mathematical talk. Educational Studies in Mathematics, 70, 127–141.

    Article  Google Scholar 

  • Fauconnier, G., & Turner, M. (2002). How we think: Conceptual blending and the mind’s hidden complexities. New York: Basic Books.

    Google Scholar 

  • Flevares, L. M., & Perry, M. (2001). How many do you see? The use of nonspoken representations in first-grade mathematics lessons. Journal of Educational Psychology, 93, 330–345.

    Article  Google Scholar 

  • Fukawa-Connelly, T. (2012). A case study of one instructor’s lecture-based teaching of proof in abstract algebra. Educational Studies in Mathematics. doi:10.1007/s10649-012-9407-9.

    Google Scholar 

  • Fukawa-Connelly, T., & Newton, C. (2014). Evaluating mathematical quality of instruction in advanced mathematics courses by examining the enacted example space. Educational Studies in Mathematics, 87(3), 323–349.

    Article  Google Scholar 

  • Goldin-Meadow, S., Kim, S., & Singer, M. (1999). What the teachers’ hands tell the students’ minds about math. Journal of Educational Psychology, 91, 720–730.

    Article  Google Scholar 

  • Keene, K. A., Rasmussen, C., & Stephan, M. (2012). Gestures and a chain of signification: The case of equilibrium solutions. Mathematics Education Research Journal, 24(3), 347–369.

    Article  Google Scholar 

  • Kelly, S. D., Özyürek, A., & Maris, E. (2010). Two sides of the same coin: Speech and gesture mutually interact to enhance comprehension. Psychological Science, 21, 260–267.

    Article  Google Scholar 

  • Kita, S. (2000). How representational gestures help speaking. In D. McNeill (Ed.), Language and gesture (pp. 162–185). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Kita, S., & Davies, T. S. (2009). Competing conceptual representations trigger co-speech representational gestures. Language & Cognitive Processes, 24, 761–775.

    Article  Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Lee, H. S., Keene, K. A., Lee, J. T., Holstein, K., Early, M. E., & Eley, P. (2009). Pedagogical content moves in an inquiry-oriented differential equations class: Purposeful decisions to further mathematical discourse. Raleigh: Proceedings of the 12th annual conference on research in undergraduate mathematics education.

    Google Scholar 

  • Leron, U. (1983). Structuring mathematical proofs. The American Mathematical Monthly, 90(3), 174–184.

    Article  Google Scholar 

  • Liddell, S. K. (1998). Grounded blends, gestures and conceptual shifts. Cognitive Linguistics, 9(3), 283–314.

    Article  Google Scholar 

  • Marghetis, T., & Núñez, R. (2010). Dynamic construals, static formalisms: Evidence from co-speech gesture during mathematical proving. Center for research in language technical report, 22 (1).

  • Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15(3), 277–290.

    Article  Google Scholar 

  • McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.

    Google Scholar 

  • McNeill, D. (2005). Gesture and thought. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • McNeill, D. (2006). Gesture: A psycholinguistic approach. In E. Brown & A. Anderson (Eds.), The encyclopedia of language and linguistics (pp. 58–66). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • McNeill, D., Cassell, J., & McCullough, K.-E. (1994). Communicative effects of speech mismatched gestures. Research on Language and Social Interaction, 27, 223–237.

    Article  Google Scholar 

  • Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 3–18.

    Article  Google Scholar 

  • Mills, M. (2011). Mathematicians’ pedagogical thoughts and practices in proof presentation. In S. Brown, S. Larsen, K. Marrongelle, & M. Oehrtman (Eds.), Proceedings of the 14th conference for research in undergraduate mathematics education (Vol. 2, pp. 283–297). Portland, OR: The Special Interest Group of the Mathematics Association of American (SIGMAA) for Research in Undergraduate Mathematics Education.

  • Mills, M. (2012). In S. Brown, S. Larsen, K. Marrongelle, & M. Oehrtman (Eds.), Investigating the teaching practices of professors when presenting proofs: The use of examples (pp. 512–516). Portland: Proceedings of the 15th conference for research in undergraduate mathematics education.

    Google Scholar 

  • Parrill, F., & Sweetser, E. (2004). What we mean by meaning. Gesture, 4(2), 197–219.

    Article  Google Scholar 

  • Peirce, C. S. (1931/1958). In C. Hartshorne, P. Weiss, & A. Burks (Eds.), Collected papers (Vol. I–VIII). Cambridge, MA: Harvard University Press.

  • Ping, R., & Goldin-Meadow, S. (2008). Hands in the air: Using ungrounded iconic gestures to teach children conservation of quantity. Developmental Psychology, 44(5), 1277.

    Article  Google Scholar 

  • Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics 70, 111–126. 

  • Rasmussen, C., Stephan, M., & Allen, K. (2004). Classroom mathematical practices and gesturing. Journal of Mathematical Behavior, 23, 301–323.

    Article  Google Scholar 

  • Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the mathematics classroom. Science, 316, 1128–1129.

    Article  Google Scholar 

  • Roth, W.-M., & Thom, J. S. (2009). Bodily experience and mathematical conceptions: From classical views to a phenomenological reconceptualization. Educational Studies in Mathematics, 70, 175–189.

    Article  Google Scholar 

  • Sfard, A. (2009). What’s all the fuss about gestures? A commentary. Educational Studies in Mathematics, 70, 191–200.

    Article  Google Scholar 

  • Sfard, A., & McClain, K. (2002). Analyzing tools: Perspectives on the role of designed artifacts in mathematics learning. Journal of the Learning Sciences, 11(2&3), 153–161. 

  • Singer, M. A., & Goldin-Meadow, S. (2005). Children learn when their teachers gestures and speech differ. Psychological Science, 16, 85–89.

    Article  Google Scholar 

  • Soto-Johnson, H. & Troup, J. (2014). Reasoning on the complex plane via inscriptions and gesture. The Journal of Mathematical Behavior 36, 109–125.

  • Speer, N., Smith, J., & Horvath, A. (2010). Collegiate mathematics teaching: An unexamined practice. The Journal of Mathematical Behavior 29(2), 99–114.

  • Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 273–285). Thousand Oaks: Sage Publications.

    Google Scholar 

  • Thomas, M. O. J., Yoon, C., & Dreyfus, T. (2009) Multimodal use of semiotic resources in the construction of antiderivative. In R. Hunter, B. Bicknell, & T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd annual conference of the Mathematics Education Research Group of Australasia (Vol. 2). Palmerston North, NZ: MERGA.

  • Turner, M., & Fauconnier, G. (1995). Conceptual integration and formal expression. Journal of Metaphor and Symbolic Activity, 10(3), 183–204.

    Article  Google Scholar 

  • Valenzeno, L., Alibali, M. W., & Klatzky, R. L. (2003). Teachers’ gestures facilitate students’ learning: A lesson in symmetry. Contemporary Educational Psychology, 28, 187–204.

    Article  Google Scholar 

  • Vygotsky, L. S. (1997). Collected works, 4 (R. Rieber, Ed.). New York: Plenum.

  • Weber, K. (2004). Traditional instruction in advanced mathematics courses: A case study of one professor’s lectures and proofs in an introductory real analysis course. Journal of Mathematical Behavior, 23, 115–133.

    Article  Google Scholar 

  • Wheeler, A., & Champion, J. (2013). Students’ proofs of one-to-one and onto properties in introductory abstract algebra. International Journal of Mathematical Education in Science and Technology, 44(8), 1107–1116.

    Article  Google Scholar 

  • Wolfgram, M. (2014). Gesture and the communication of mathematical ontologies in classrooms. Journal of Linguistic Anthropology, 24(2), 216–237.

    Article  Google Scholar 

  • Yoon, C., Thomas, M. O., & Dreyfus, T. (2011). Grounded blends and mathematical gesture spaces: Developing mathematical understandings via gestures. Educational Studies in Mathematics, 78(3), 371–393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Weinberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinberg, A., Fukawa-Connelly, T. & Wiesner, E. Characterizing instructor gestures in a lecture in a proof-based mathematics class. Educ Stud Math 90, 233–258 (2015). https://doi.org/10.1007/s10649-015-9623-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-015-9623-1

Keywords

Navigation