Skip to main content
Log in

Multiple factors mediate insecticide toxicity to a key predator for cotton insect pest management

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Mortality of agricultural pests caused by arthropod predators is a valuable ecosystem service for crop production. The earwig, Euborellia annulipes (Lucas), attacks different pest species in various crop ecosystems, including larvae and pupae of the boll weevil, Anthonomus grandis grandis (Boh.). In this study, multiple factors were assessed to measure the selectivity of insecticides used against sap-sucking and chewing cotton pests for two E. annulipes populations. Nymphs and adults of E. annulipes were exposed to the insecticides in two ways: ingestion of contaminated prey, and contact with dried residues on either inert surfaces or treated plants bearing prey. Pymetrozine, chlorantraniliprole, and spinetoram had little effect on the predator regardless the tested earwig population, life stage with developmental time and survival, or the route of exposure (ingestion and residual). Cyantraniliprole dried-residue impeded nymph to complete development and only 27% of adults survived until 20 days after exposure. Pyriproxyfen was harmless through acute toxicity to nymphs and adult earwigs (70–100% survival 72 h after exposure), but prevented normal development of nymphs to adults causing chronic toxicity. Chlorfenapyr, indoxacarb, lambda-cyhalothrin, chlorpyrifos, dimethoate, and malathion were harmful to the predator regardless life stage or method of exposure. The negative impact of thiamethoxam, lambda-cyhalothrin and indoxacarb was diminished when exposure occurred on plants with predator allowed to shelter in the soil. The results indicate that insecticide selectivity outcome varies by the insecticide, predator life stage and the predator’s behavior. Therefore, testing different predator life stages via several routes of exposure, without denying the insect the opportunity to engage in its normal behavior can provide better estimates of insecticide selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AGROFIT, Sistema de Agrotóxicos Fitossanitários (2017) Ministério da Agricultura, Pecuária e Abastecimento. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 8 Jan 2021

  • Amarasekare KG, Shearer PW (2013) Life history comparison of two green lacewing species Chrysoperla johnsoni and Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 42:1079–1084

    Article  Google Scholar 

  • Barbosa PRR, Michaud JP, Rodrigues ARS, Torres JB (2016) Dual resistance to lambda-cyhalothrin and dicrotophos in Hippodamia convergens (Coleoptera: Coccinellidae). Chemosphere 159:1–9

    Article  CAS  Google Scholar 

  • Barbosa PRR, Michaud JP, Bain CL, Torres JB (2017) Toxicity of three aphicides to the generalist predators Chrysoperla carnea (Neuroptera: Chrysopidae) and Orius insidiosus (Hemiptera: Anthocoridae). Ecotoxicology 26:589–599

  • Barbosa PRR, Oliveira MD, Barros EM, Michaud JP, Torres JB (2018) Differential impacts of six insecticides on a mealybug and its coccinellid predator. Ecotoxicol Environ Saf 147:963–971

  • Barros EM, Silva-Torres CSA, Torres JB, Rolim GG (2018) Short-term toxicity of insecticides residues to key predators and parasitoids for pest management in cotton. Phytoparasitica 46:391–404

    Article  CAS  Google Scholar 

  • Barry JD, Portillo HE, Annan IB, Cameron RA, Clagg DG, Dietrich RF, Watson LJ, Leighty RM, Ryan DL, McMillan JA, Swain RS, Kaczmarczyk RA (2014) Movement of cyantraniliprole in plants after foliar applications and its impact on the control of sucking and chewing insects. Pest Manage Sci 71:395–403

    Article  Google Scholar 

  • Bélot JL, Barros EM, Miranda JE (2016) Riscos e oportunidades: o bicudo-do-algodoeiro. In: Bélot JL (ed) Desafios do cerrado: como sustentar a expansão da produção com produtividade e competitividade. AMPA, Cuiabá, Brazil, p 77–118

    Google Scholar 

  • Bharadwaj RK (1966) Observations on the bionomics of Euborellia annulipes (Dermaptera: Labiduridae). Ann Entomol Soc Am 59:441–450

    Article  Google Scholar 

  • Bordini I, Ellsworth PC, Naranjo SE, Fournier A (2021) Novel insecticides and generalist predators support conservation biological control in cotton. Biol Control 154:104502

    Article  CAS  Google Scholar 

  • Bozsik A (2006) Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action. Pest Manage Sci 62:651–654

    Article  CAS  Google Scholar 

  • Broughton S, Harrison J, Rahman T (2014) Effect of new and old pesticides on Orius armatus (Gross), an Australian predator of western flower thrips, Frankliniella occidentalis (Pergande). Pest Manage Sci 70:389–397

    Article  CAS  Google Scholar 

  • Campos MR, Picanço MC, Martins JC, Tomaz AC, Guedes RNC (2011) Insecticide selectivity and behavioral response of the earwig Doru luteipes. Crop Prot 30:1535–1540

    Article  CAS  Google Scholar 

  • Coakley JM, Maxwell FG, Jenkins JN (1969) Influence of feeding, oviposition and egg and larval development of the boll weevil on abscission of cotton squares. J Econ Entomol 62:244–248

    Article  Google Scholar 

  • Colares F, Michaud JP, Bain CL, Torres JB (2017) Relative toxicity of two aphicides to Hippodamia convergens (Coleoptera: Coccinellidae): Implications for integrated management of sugarcane aphid, Melanaphis sacchari (Hemiptera: Aphididae). J Econ Entomol 110:52–58

    CAS  Google Scholar 

  • Costa PMG, Torres JB, Rondelli VM, Lira R (2018) Field-evolved resistance to λ-cyhalothrin in the lady beetle Eriopis connexa. Bull Entomol Res 108:380–387

    Article  CAS  Google Scholar 

  • Costa PMG, Santos RL, Nascimento DV, Torres JB (2020) Does spinetoram pose low risk to the neotropical lady beetle Eriopis connexa (Coleoptera: Coccinellidae)? Phytoparasitica 48:491–499

    Article  Google Scholar 

  • Crosariol Netto J, Degrande PE, Melo EP (2014) Seletividade de inseticidas e acaricidas aos inimigos naturais na cultura do algodão. Instituto Mato-grossense do Algodão - IMAmt, Cuiabá, 4p.

  • Deguine JP, Ferron P, Russell D (2008) Sustainable pest management for cotton production. A review. Agron Sustain Dev 28:113–137

    Article  Google Scholar 

  • Di Stefano J (2005) Effect size estimates and confidence intervals: an alternative focus for the presentation and interpretation of ecological data. In: Burk AR (ed) New Trends in Ecology Research. Nova Science, New York, NY, p 71–102

    Google Scholar 

  • Dinter A, Brugger KE, Frost NM, Woodward MD (2010) Chlorantraniliprole (Rynaxypyr): A novel DuPontTM insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management. In: Hazards of pesticides to bees – 10th International Symposium of the ICP-Bee Protection Group Acute. Julius-Kühn-Archiv, Bucareste. p 84–96

  • El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. In: Trdan S (ed) Insecticides - development of safer and more effective technologies. IntechOpen, London, UK, p 1–56

    Google Scholar 

  • Elzen AGW (2001) Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). J Econ Entomol 94:55–59

    Article  CAS  Google Scholar 

  • Fillman DA, Sterling WL (1983) Killing power of the red imported fire and [Hym.: Formicidae]: a key predator of the boll weevil [Col.: Curculionidae]. Entomophaga 28:339–344

    Article  Google Scholar 

  • Hughes KA, Lahm GP, Selby TP, Stevenson TM (2004) Cyano anthranilamide insecticides. WO Patent 2004067528. Chem Abstr 141:190786

    Google Scholar 

  • Ishaaya I, Horowitz AR (1995) Pyriproxyfen, a novel insect growth regulator for controlling whiteflies: Mechanisms and resistance management. Pesticide Sci 43:227–232

    Article  CAS  Google Scholar 

  • Jiang J, Wang Y, Mu W, Zhang Z (2019) Sublethal effects of anthranilic diamide insecticides on the demographic fitness and consumption rates of the Coccinella septempunctata (Coleoptera: Coccinellidae) fed on Aphis craccivora. Environ Sci Pollut Res 27:4178–4189

    Article  Google Scholar 

  • Kim SY, Ahn HG, Ha PJ, Lim UT, Lee JH (2018) Toxicities of 26 pesticides against 10 biological control species. J Asia Pac Entomol 21:1–8

    Article  Google Scholar 

  • Klostermeyer EC (1942) The life history and habits of the ringlegged earwig, Euborellia annulipes (Lucus) (Order Dermaptera). J Kansas Entomol Soc 15:13–18

    Google Scholar 

  • Kristinsson H (1994) Pymetrozine - a new insecticide, In: 3rd International Symposium, Advances in the Chemistry of Insect Control III. Royal Society of Chemistry, Cambridge. p 85–102

  • Luna RF, Bestete LR, Torres JB, Silva-Torres CSA (2018) Predation and behavioral changes in the neotropical lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) exposed to lambda-cyhalothrin. Ecotoxicology 27:689–702

    Article  CAS  Google Scholar 

  • Luo S, Naranjo SE, Wu K (2014) Biological control of cotton pests in China. Biol Control 68:6–14

    Article  Google Scholar 

  • Machado AVA, Potin DM, Torres JB, Silva-Torres CSA (2019) Selective insecticides secure natural enemies action in cotton pest management. Ecotoxicol Environ Saf 184:1–9

    Article  Google Scholar 

  • Medina BP, Budia F, Estal PDEL, Viñuela E (2003) Effects of three modern insecticides, pyriproxyfen, spinosad and tebufenozide, on survival and reproduction of Chrysoperla carnea adults. Ann Appl Biol 142:55–61

    Article  CAS  Google Scholar 

  • Mills NJ, Beers EH, Shearer PW, Unruh TR, Amarasekare KG (2016) Comparative analysis of pesticide effects on natural enemies in western orchards: a synthesis of laboratory bioassay data. Biol Control 102:17–25

    Article  CAS  Google Scholar 

  • Miranda JE, Rodrigues SMM (2015) História do bicudo no Brasil. In: Belot JL (ed) O bicudo-do-algodoeiro (Anthonomus grandis Boh., 1843) nos cerrados brasileiros: Biologia e medidas de controle. Instituto Mato-grossense do Algodão – IMAmt, Cuiabá, Brazil, p 11–45

    Google Scholar 

  • Naranjo SE, Ellsworth PC, Hagler JR (2004) Conservation of natural enemies in cotton: Role of insect growth regulators in management of Bemisia tabaci. Biol Control 30:52–72

    Article  CAS  Google Scholar 

  • Neves RCS, Showler AT, Pinto ES, Bastos CS, Torres JB (2013) Reducing boll weevil populations by clipping terminal buds and removing abscised fruiting bodies. Entomol Exp Appl 146:276–285

    Article  Google Scholar 

  • Ramalho FS, Wanderley PA (1996) Ecology and management of the boll weevil in South American cotton. Am. Entomol 42:41–47

    Google Scholar 

  • Redoan ACM, Carvalho GA, Cruz I, Figeiredo MLC, Silva RB (2013) Physiological selectivity of insecticides to adult of Doru luteipes (Scudder, 1876) (Dermaptera: Forficulidae). Rev Ciênc Agron 44:842–850

    Article  Google Scholar 

  • SAS Institute (2002) SAS/STAT user’s guide, release 9.0. SAS Institute, Cary, NC, USA

  • Selby TP, Lahm GP, Stevenson TM, Hughes KA, Cordova D, Annan IB, Barry JD, Benner EA, Currie MJ, Pahutski TF (2013) Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg Med Chem Lett 23:6341–6345

    Article  CAS  Google Scholar 

  • Showler AT, Cantu RV (2005) Intervals between boll weevil (Coleoptera: Curculionidae) oviposition and square abscission, and development to adulthood in Lower Rio Grande Valley, Texas, field conditions. Southwest Entomol 30:161–164

    Google Scholar 

  • Silva AB, Batista JL, Brito CH (2009) Aspectos biológicos de Euborellia annulipes sobre ovos Spodoptera frugiperda. Eng Ambient 6:482–495

    Google Scholar 

  • Silvie PJ, Thomazoni D, Soria MF, Saran PE, Bélot JL (2013) Pragas e seus danos em algodoeiro. Instituto Mato-grossense do Algodão – IMAmt, Primavera do Leste, Brasil

    Google Scholar 

  • Singh V, Sharma N, Sharma SK (2016) A review on effects of new chemistry insecticides on natural enemies of crop pests. Int J Sci Environ Technol 5:4339–4361

    Google Scholar 

  • Smagghe G, Deknopper J, Meeus I, Mommaerts V (2013) Dietary chlorantraniliprole suppresses reproduction in worker bumblebees. Pest Manage Sci 69:787–791

    Article  CAS  Google Scholar 

  • Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manage Sci 57:896–905

    Article  CAS  Google Scholar 

  • Systat Software Inc (2013) SigmaPlot versão 12.5. Systat Software Inc, Palo Alto, CA, USA

  • Talebi K, Kavousi A, Sabahi Q (2008) Impacts of pesticides on arthropod biological control agents. Pest Technol 2:87–97

    Google Scholar 

  • Torres JB, Bueno AF (2018) Conservation biological control using selective insecticides – a valuable tool for IPM. Biol Control 126:53–64

    Article  Google Scholar 

  • Torres JB, Rolim GG, Potin DM, Arruda LS, Neves RCS (2021) Susceptibility of boll weevil (Coleoptera: Curculionidae) to ethiprole, differential toxicity against selected natural enemies, and diagnostic concentrations for resistance monitoring. J Econ Entomol 114:2381–2389

    Article  Google Scholar 

  • Torres JB, Silva-Torres CSA, Oliveira JV (2003) Toxicity of pymetrozine and thiamethoxam to Aphelinus gossypii and Delphastus pusillus. Pesqui Agropecu Bras 38:459–466

    Article  Google Scholar 

  • van Hamburg H, Guest PJ (1997) The impact of insecticides on beneficial arthropods in cotton agro-ecosystems in South Africa. Arch Environ Contam Toxicol 32:63–68

    Article  Google Scholar 

  • Vennard C, Nguama B, Dillon HJ, Ooughi IH, Chahnley AK (1998) Effects of the juvenile hormone mimic pyriproxyfen on egg development, embryogenesis, larval development, and metamorphosis in the desert locust Schistocerca gregaria (Orthoptera: Acrididae). J Econ Entomol 9:41–49

    Article  Google Scholar 

  • Winteringham FPW (1969) Mechanisms of selective insecticidal action. Annu Rev Entomol 14:409–442

    Article  CAS  Google Scholar 

  • Yu JS (2014) The toxicology and biochemistry of insecticides. CRC press, Boca Raton, USA

    Book  Google Scholar 

  • Yu SJ (2004) Induction of detoxification enzymes by triazine herbicides in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pestic Biochem Physiol 80:113–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) as source of research funding (No. 420815/2018-0) and the research grant No. 303445/2020-3 for JBT, and to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) through the program CAPES PROEX-PPGEA. Also, to Roy Van Driesche, from University of Massachusetts, we are thankful for corrections and suggestions addressed on an earlier draft of this manuscript improving it deeply.

Author contributions

DMP: Investigation, analysis, writing. AVAM: Investigation, writing. PRRB: Conceptualization, writing. JBT: Conceptualization, investigation, writing, funding acquisition, and revisions made by reviewers. All authors read, corrected, and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Braz Torres.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

The authors recognize that the paper is being submitted for publication in the Ecotoxicology, and assure that this paper has not been submitted, accepted, or published in another journal.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potin, D.M., Machado, A.V.A., Barbosa, P.R.R. et al. Multiple factors mediate insecticide toxicity to a key predator for cotton insect pest management. Ecotoxicology 31, 490–502 (2022). https://doi.org/10.1007/s10646-022-02526-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02526-6

Keywords

Navigation