Skip to main content
Log in

Does spinetoram pose low risk to the neotropical lady beetle Eriopis connexa (Coleoptera: Coccinellidae)?

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Spinetoram is a new spinosyn recommended against lepidopteran and other defoliating species; while Eriopis connexa (Germar) preys upon aphids. To get additional control for defoliator and aphid species simultaneously it is worth to know the impact of spinetoram on the lady beetles. The impact of spinetoram on different stages of the lady beetle was studied using the field rates 0.08, 0.12, and 2-fold the highest field rate (0.24 g i.a./L). The study used two lady beetle populations: susceptible and resistant to pyrethroids, which is also recommended against defoliating pest species. Spinetoram applied on the egg masses resulted in similar development and hatching for spinetoram rates and lady beetle populations. Egg masses from resistant population treated with higher rates resulted in reduced survival for newly hatched larvae compared to untreated and the lower spinetoram rates. Lady beetle forage on treated surface for prey; but 4th- instar larvae confined on treated leaf exhibited similar developmental duration, pupation, and emergence rates. Larvae of similar age caged on treated leaves with aphids promoting dried residue and contaminated prey ingestion resulted in lower pupation rate at the highest spinetoram field rate for both lady beetle populations. Adult beetles from both populations caged on either spinetoram-dried residues or dried residues plus contaminated aphids exhibited similar egg production and survival. Therefore, responding the question raised with the study, spinetoram caused minor impact on lady beetle larvae and unnoticeable impact on adults; hence, can be another option for insecticide recommendation against lepidopteran larvae and still conserve the lady beetle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADAPAR. (2016). Exalt®. Retrieved from http://www.adapar.pr.gov.br/arquivos/File/defis/DFI/Bulas/Inseticidas/exalt_.pdf. Accessed 13 Nov 2018

  • AGROFIT (Sistema de Agrotóxicos Fitossanitários) (2018). Retrieved from http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 13 Nov 2018

  • Barros, E. M., Silva-Torres, C. S. A., Torres, J. B., & Rolim, G. G. (2018). Short-term toxicity of insecticides residues to key predators and parasitoids for pest management in cotton. Phytoparasitica, 46, 391–404.

    Article  CAS  Google Scholar 

  • Barros, E. M., Rodrigues, A. R. S., Colares, F., Machado, A. V. A., & Torres, J. B. (2019). Susceptibility of boll weevil to ready-to-use insecticide mixtures. Arquivos do Instituto Biológico, 86, e1232018.

    Article  Google Scholar 

  • Biondi, A., Mommaerts, V., Smagghe, G., Viñuela, E., Zappalà, L., & Desneux, N. (2012). The non-target impact of spinosyns on beneficial arthropods. Pest Management Science, 68, 1523–1536.

    Article  CAS  Google Scholar 

  • Broza, M. (1986). An aphid outbreak in cotton fields in Israel. Phytoparasitica, 14, 81–85.

    Article  Google Scholar 

  • Costa, P. M. G., Torres, J. B., Rondelli, V. M., & Lira, R. (2018). Field-evolved resistance to λ-cyhalothrin in the lady beetle Eriopis connexa. Bullettin of Entomological Research, 108, 380–387.

    Article  CAS  Google Scholar 

  • Croft, B. A., & Brown, A. W. A. (1975). Responses of arthropod natural enemies to insecticides. Annual Review Entomology, 20, 285–335.

    Article  CAS  Google Scholar 

  • Deguine, J. P., Gozé, E., & Leclant, F. (2000). The consequences of late outbreaks of the aphid Aphis gossypii in cotton growing in Central Africa: Towards a possible method for the prevention of cotton stickness. International Journal of Pest Management, 46, 86–89.

    Article  Google Scholar 

  • Dripps, J., Olson, B., Sparks, T., and Crouse, G. (2008). Spinetoram: How artificial intelligence combined natural fermentation with synthetic chemistry to produce a new spinosyn insecticide`. Online. Plant Health Progress, https://doi.org/10.1094/PHP-2008-0822-01-OS.

  • Evans, E. W. (2003). Searching and reproductive behaviour of female aphidophagous ladybirds (Coleoptera: Coccinellidae): A review. European Journal of Entomology, 100, 1–10.

    Article  Google Scholar 

  • Garzón, A., Medina, P., Amor, F., Viñuela, E., & Budia, F. (2015). Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Chemosphere, 132, 87–93.

    Article  Google Scholar 

  • Godfrey, L., Rosenheim, J. A., & Goodell, P. B. (2000). Cotton aphid emerges as major pest in SJV cotton. California Agriculture, 54, 26–29.

    Article  Google Scholar 

  • González, G. 2019. Coccienllidae del Perú, Eriopis connexa (Germar, 1824). http://www.coccinellidae.cl/paginasWebPeru/Paginas/Eriopis_connexa_Peru.php. Accessed 21 October 2019.

  • Gorss, K., & Rosenheim, J. A. (2011). Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecological Applications, 7, 2770–2780.

    Article  Google Scholar 

  • Hardin, M. R., Benrey, B., Coll, M., Lamp, W. O., Roderick, G. K., & Barbosa, P. (1995). Arthropod pest resurgence: An overview of potential mechanisms. Crop Protection, 14, 3–18.

    Article  Google Scholar 

  • IRAC. (2019). IRAC mode of action classification scheme. Version 9.3. CroLife international, 30p.

  • Jalali, M. A., Jalali, T., Van, L., Tirry, L., & De Clercq, P. (2009). Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata. Phytoparasitica, 37, 323–326.

    Article  CAS  Google Scholar 

  • Kidd, P. W., & Rummel, D. R. (1997). Effect of insect predators and a pyrethroid insecticide on cotton aphid, Aphis gossypii Glover, population density. The Southwesthern Entomology, 22, 381–393.

    Google Scholar 

  • Kidd, P. W., Rummel, D. R., & Thorvilson, H. G. (1996). Effect of cyhalothrin on field populations of the cotton aphid, Aphis gossypii Glover, in the Texas High Plains. The Southwesthern Entomologist, 21, 293–301.

    CAS  Google Scholar 

  • Machado, A. V. A., Potin, D. M., Torres, J. B., & Silva-Torres, C. S. A. (2019). Selective inseticides secure natural enemies action in cotton pest management. Ecotoxicology and Environmental Safety, 184, 109669.

    Article  CAS  Google Scholar 

  • Miller, J. C. (1995). A comparison of techniques for laboratory propagation of a south American ladybeetle, Eriopis connexa (Coleoptera: Coccinellidae). Biological Control, 5, 462–465.

    Article  Google Scholar 

  • Olmstead, D. L., & Shelton, A. M. (2012). Evaluation of insecticide chemistries against the leek moth (Lepidoptera: Acrolepiidae), a new pest in North America. Florida Entmologist, 95, 1127–1131.

    Article  Google Scholar 

  • Rafiee, H. D., Hejazi, M. J., Ganbalani, G. N., & Saber, M. (2008). Toxicity of some biorational and conventional insecticides to cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) and its ectoparasitoid, Habrobracon hebetor (Hymenoptera: Braconidae). Journal of the Entomological Society of Iran, 28, 27–37.

    Google Scholar 

  • Rodrigues, A. R. S., Spíndola, A. F., Torres, J. B., Siqueira, H. A. A., & Colares, F. (2013). Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance. Ecotoxicology and Environmental Safety, 96, 53–60.

    Article  CAS  Google Scholar 

  • Rolim, G. G., Arruda, L. S., Torres, J. B., Barros, E. M., & Fernandes, M. G. (2019). Susceptibility of cotton boll weevil (Coleoptera: Curculionidae) to spinosyns. Journal of Economic Entomology, 122, 1688–1694.

    Article  Google Scholar 

  • SAS Institute. (2002). SAS/STAT®9.2 user’s guide. Cary: SAS Institute Inc..

    Google Scholar 

  • Shimokawatoko, Y., Sato, N., Yamaguchi, T., & Tanaka, H. (2012). Development of the novel insecticide Spinetoram (DIANA®). Research Development Report Sumitomo Kagaku, vol. 2012. https://www.sumitomo-chem.co.jp/english/rd/report/files/docs/2012E_1.pdf

  • Siebert, M. W., Nolting, S., Dripps, J. E., Walton, L. C., Cook, D. R., Stewart, S., & Herbert, H. (2016). Efficacy of spinetoram against thrips (Thysanoptera: Thripidae) in seedling cotton, Gossypium hirsutum L. Journal of Cotton Science, 20, 309–319.

    CAS  Google Scholar 

  • Sparks, T. C. (1990). Endocrine-based insecticides. In E. Hodgson & R. J. Kuhr (Eds.), Safer insecticides: Development and use (pp. 103–154). Marcel Dakker Inc: New York.

    Google Scholar 

  • Sparks, T. C., Dripps, J. E., Watson, G. B., & Paroonagian, D. (2012). Resistance and cross resistance to the spinosyns: A review and analysis. Pesticide and Biochemestry Physiology, 102, 1–10.

    Article  CAS  Google Scholar 

  • Stern, V. M., Smith, R. R. F., Van den Bosch, R., & Hagen, K. S. (1959). The integrated control concept. Hilgardia, 29, 81–101.

    Article  CAS  Google Scholar 

  • Thompson, G. D., Dutton, R., & Sparks, T. C. (2000). Spinosad – A case study: An example from a natural product discovery programme. Pest Management Science, 56, 696–702.

    Article  CAS  Google Scholar 

  • Torres, J. B., & Bueno, A. F. (2018). Conservation biological control using selective insecticides - a valuable tool for IPM`. Biological Control, 126, 53–64.

    Article  Google Scholar 

  • Torres, J. B., Rodrigues, A. R. S., Barros, E. M., & Santos, D. S. (2015). Lambda-cyhalothrin resistance in the lady beetle Eriopis connexa (Coleoptera: Coccinellidae) confers tolerance to other pyrethroids. Journal of Economic Entomology, 108, 60–68.

    Article  CAS  Google Scholar 

  • Visnupriya, M., & Muthukrishnan, N. (2017). Acute toxicity and field evaluation of spinetoram 12 SC against Helicoverpa armigera Hubner on tomato. Journal of Entomology and Zoology Study, 5, 1608–1613.

    Google Scholar 

  • Vivan, L. M., Torres, J. B., & Fernandes, P. L. S. (2017). Activity of selected formulated biorational and synthetic insecticides against larvae of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology, 110, 118–126.

    CAS  PubMed  Google Scholar 

  • Zhang, K., Li, J., Liu, H., Wang, H., Lamusi, A., & Spring, D. (2018). Semi-synthesis and insecticidal activity of spinetoram J and its D-forosamine replacement analogues. Beilstein Journal of Organic Chemistry, 14, 2321–2330.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) research grant 301739/2016-1, and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) project PROCAD NF no. 179923, and CNPq through the research grant Proc. 301739/2016-1. The authors also recognize the valuable contributions made on early draft of the manuscript by three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Braz Torres.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, P.M.G., dos Santos, R.L., do Nascimento, D.V. et al. Does spinetoram pose low risk to the neotropical lady beetle Eriopis connexa (Coleoptera: Coccinellidae)?. Phytoparasitica 48, 491–499 (2020). https://doi.org/10.1007/s12600-020-00802-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00802-x

Keywords

Navigation