Skip to main content
Log in

Gastrointestinal Factor GDDR Attenuates Epithelial–Mesenchymal Transition in Gastric Cancer via Inhibiting AKT Signal

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The gastric dramatic down-related gene (GDDR) is an abundantly expressed secretory protein in normal gastric epithelia, while its expression is distinctly decreased in gastric cancer. However, the role of GDDR in gastric cancer remains poorly understood.

Aims

This study aims to detect the expression and clinical significance of GDDR in gastric cancer and investigate its effects on epithelial–mesenchymal transition.

Methods

The expression of GDDR in gastric cancer was examined by immunohistochemistry, immunoblotting, and Western blotting. The relationships between GDDR expression and clinicopathological factors were evaluated. The effects of GDDR on epithelial–mesenchymal transition of gastric cancer cells were investigated in vitro.

Results

GDDR was absent in gastric cancer tissue or dramatically downregulated in gastric cancer cell lines. Loss of GDDR expression in gastric cancer was strongly correlated with clinicopathological factors, such as tumor differentiation (p = 0.037), T stage (p < 0.001), lymph node metastasis (p = 0.008) and TNM stage (p < 0.001). Patients with decreased GDDR expression presented shortened overall survival (p = 0.033). Functional studies demonstrated that GDDR elevation augmented cell–cell adhesion and suppressed cell motility, concomitant with increased expression of E-cadherin and decreased expression of β-catenin and vimentin. Conversely, GDDR depletion increased cell motility, concomitant with decreased expression of E-cadherin and increased expression of β-catenin and vimentin. Moreover, GDDR had an inhibitory effect on PI3K/Akt signaling pathway.

Conclusions

Our findings suggested that GDDR expression was significantly associated with the progression of gastric cancer and GDDR may function as a tumor suppressor via inhibiting the epithelial–mesenchymal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Figueiredo C, Garcia-Gonzalez MA, Machado JC. Molecular pathogenesis of gastric cancer. Helicobacter. 2013;18:28–33.

    Article  PubMed  Google Scholar 

  2. Shimizu T, Marusawa H, Watanabe N, Chiba T. Molecular pathogenesis of Helicobacter pylori-related gastric cancer. Gastroenterol Clin N Am. 2015;44:625–638.

    Article  Google Scholar 

  3. Li M, Feurino LW, Li F, et al. Thymosinalpha1 stimulates cell proliferation by activating ERK1/2, JNK, and increasing cytokine secretion in human pancreatic cancer cells. Cancer Lett. 2007;248:58–67.

    Article  CAS  PubMed  Google Scholar 

  4. Ishaq S, Nunn L. Helicobacter pylori and gastric cancer: a state of the art review. Gastroenterol Hepatol Bed Bench. 2015;8:S6–S14.

    PubMed  PubMed Central  Google Scholar 

  5. Ebule IA, Longdoh AN, Paloheimo IL. Helicobacter pylori infection and atrophic gastritis. Afr Health Sci. 2013;13:112–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Resnick MB, Sabo E, Meitner PA, et al. Global analysis of the human gastric epithelial transcriptome altered by Helicobacter pylori eradication in vivo. Gut. 2006;55:1717–1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Du JJ, Dou KF, Peng SY, et al. Down-regulated full-length novel gene GDDR and its effect on gastric cancer. Zhonghua Yi Xue Za Zhi. 2003;83:1166–1168.

    CAS  PubMed  Google Scholar 

  8. Du JJ, Dou KF, Peng SY, et al. Study on novel gene GDDR related to gastric cancer. Zhonghua Wai Ke Za Zhi. 2005;43:10–13.

    PubMed  Google Scholar 

  9. May FE, Griffin SM, Westley BR. The trefoil factor interacting protein TFIZ1 binds the trefoil protein TFF1 preferentially in normal gastric mucosal cells but the co-expression of these proteins is deregulated in gastric cancer. Int J Biochem Cell Biol. 2009;41:632–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baus-Loncar M, Lubka M, Pusch CM, Otto WR, Poulsom R, Blin N. Cytokine regulation of the trefoil factor family binding protein GKN2 (GDDR/TFIZ1/blottin) in human gastrointestinal epithelial cells. Cell Physiol Biochem. 2007;20:193–204.

    Article  CAS  PubMed  Google Scholar 

  11. Willander H, Hermansson E, Johansson J, Presto J. BRICHOS domain associated with lung fibrosis, dementia and cancer—a chaperone that prevents amyloid fibril formation? FEBS J. 2011;278:3893–3904.

    Article  CAS  PubMed  Google Scholar 

  12. Sanchez-Pulido L, Devos D, Valencia A. BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci. 2002;27:329–332.

    Article  CAS  PubMed  Google Scholar 

  13. Menheniott TR, Peterson AJ, O’Connor L, et al. A novel gastrokine, Gkn3, marks gastric atrophy and shows evidence of adaptive gene loss in humans. Gastroenterology. 2010;138:1823–1835.

    Article  CAS  PubMed  Google Scholar 

  14. Moss SF, Lee JW, Sabo E, et al. Decreased expression of gastrokine 1 and the trefoil factor interacting protein TFIZ1/GKN2 in gastric cancer: influence of tumor histology and relationship to prognosis. Clin Cancer Res. 2008;14:4161–4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chu G, Qi S, Yang G, Dou K, Du J, Lu Z. Gastrointestinal tract specific gene GDDR inhibits the progression of gastric cancer in a TFF1 dependent manner. Mol Cell Biochem. 2012;359:369–374.

    Article  CAS  PubMed  Google Scholar 

  16. Shi LS, Wang H, Wang F, Feng M, Wang M, Guan WX. Effects of gastrokine2 expression on gastric cancer cell apoptosis by activation of extrinsic apoptotic pathways. Mol Med Rep. 2014;10:2898–2904.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Menheniott TR, Kurklu B, Giraud AS. Gastrokines: stomach-specific proteins with putative homeostatic and tumor suppressor roles. Am J Physiol Gastrointest Liver Physiol. 2013;304:G109–G121.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Das A, Sen S. Extracellular matrix density promotes EMT by weakening cell-cell adhesions. Mol Biosyst. 2014;10:838–850.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Yin C, Li H, et al. Nir1 promotes invasion of breast cancer cells by binding to chemokine (C-C motif) ligand 18 through the PI3 K/Akt/GSK3beta/Snail signalling pathway. Eur J Cancer. 2013;49:3900–3913.

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Fang R, Wang XF, et al. Stabilization of Snail through AKT/GSK-3beta signaling pathway is required for TNF-alpha-induced epithelial–mesenchymal transition in prostate cancer PC3 cells. Eur J Pharmacol. 2013;714:48–55.

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Dai Y, Chen J, et al. Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial–mesenchymal transition by way of Akt/GSK-3beta/Snail signaling. Hepatology. 2014;59:531–543.

    Article  CAS  PubMed  Google Scholar 

  22. Liao G, Wang M, Ou Y, Zhao Y. IGF-1-induced epithelial–mesenchymal transition in MCF-7 cells is mediated by MUC1. Cell Signal. 2014;26:2131–2137.

    Article  CAS  PubMed  Google Scholar 

  23. Lin YC, Lin JC, Hung CM, et al. Osthole inhibits insulin-like growth factor-1-induced epithelial to mesenchymal transition via the inhibition of PI3K/Akt signaling pathway in human brain cancer cells. J Agric Food Chem. 2014;62:5061–5071.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng GZ, Park S, Shu S, et al. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr Cancer Drug Targets. 2008;8:2–6.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–695.

    Article  CAS  PubMed  Google Scholar 

  26. Okholm C, Svendsen LB, Achiam MP. Status and prognosis of lymph node metastasis in patients with cardia cancer—a systematic review. Surg Oncol. 2014;23:140–146.

    Article  PubMed  Google Scholar 

  27. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sasaki T, Kuniyasu H. Significance of AKT in gastric cancer. Int J Oncol. 2014;45:2187–2192.

    CAS  PubMed  Google Scholar 

  29. Suman S, Kurisetty V, Das TP, et al. Activation of AKT signaling promotes epithelial–mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog. 2014;53:E151–E160.

    Article  CAS  PubMed  Google Scholar 

  30. Sun Y, Tian H, Wang L. Effects of PTEN on the proliferation and apoptosis of colorectal cancer cells via the phosphoinositol-3-kinase/Akt pathway. Oncol Rep. 2015;33:1828–1836.

    PubMed  Google Scholar 

  31. Chen R, Yang Q, Lee JD. BMK1 kinase suppresses epithelial–mesenchymal transition through the Akt/GSK3beta signaling pathway. Cancer Res. 2012;72:1579–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar N, Afeyan R, Sheppard S, Harms B, Lauffenburger DA. Quantitative analysis of Akt phosphorylation and activity in response to EGF and insulin treatment. Biochem Biophys Res Commun. 2007;354:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mishra R. Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer. 2010;9:144.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qiao M, Sheng S, Pardee AB. Metastasis and AKT activation. Cell Cycle. 2008;7:2991–2996.

    Article  CAS  PubMed  Google Scholar 

  35. Maseki S, Ijichi K, Tanaka H, et al. Acquisition of EMT phenotype in the gefitinib-resistant cells of a head and neck squamous cell carcinoma cell line through Akt/GSK-3beta/snail signalling pathway. Br J Cancer. 2012;106:1196–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by National Science Foundation of China (NSFC): No. 81071690.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Zhang, Z., Liu, C. et al. Gastrointestinal Factor GDDR Attenuates Epithelial–Mesenchymal Transition in Gastric Cancer via Inhibiting AKT Signal. Dig Dis Sci 61, 1941–1949 (2016). https://doi.org/10.1007/s10620-016-4115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4115-4

Keywords

Navigation