Skip to main content

Advertisement

Log in

Cirrhotic Multiorgan Syndrome

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Patients with cirrhosis and portal hypertension are at an increased risk of the development of circulatory dysfunction that may potentially result in multiple organ failure. Apart from the liver, this may involve the heart, lungs, kidneys, the immune system, the adrenal glands, and other organ systems. As the disease progresses, the circulation becomes hyperdynamic, and signs of cardiac, pulmonary, and renal dysfunction are observed, in addition to reduced survival. Infections and an altered cardiac function known as cirrhotic cardiomyopathy may be precipitators for the development of other complications such as hepatorenal syndrome. In patients with chronic organ dysfunction, various precipitating events may induce an acute-on-chronic renal failure and acute-on-chronic liver failure that negatively affect the prognosis. Future research on the pathophysiologic mechanisms of the complications and the precipitating factors is essential to understand the basics of the treatment of these challenging conditions. The aim of the present review is to focus on the development and precipitating factors of various organ failures in patients with decompensated cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACLF:

Acute-on-chronic liver failure

AKI:

Acute kidney injury

BRS:

Baroreflex sensitivity

CCK:

Cholecystokinin

CCM:

Cirrhotic cardiomyopathy

CEE:

Contrast-enhanced echocardiography

CGRP:

Calcitonin gene-related peptide

CKD:

Chronic kidney disease

CRP:

C-reactive protein

ET:

Endothelin

GFR:

Glomerular filtration rate

HPS:

Hepatopulmonary syndrome

HRS:

Hepatorenal syndrome

IL:

Interleukin

mIBG:

Metaiodobenzyl-guanidine

eNOS:

Endothelial nitric oxide synthase

PAa,O2 :

Alveolar-arterial oxygen gradient

PET:

Positron emission tomography

PoPH:

Portopulmonary hypertension

RAI:

Relative adrenal insufficiency

SBP:

Spontaneous bacterial peritonitis

SIRS:

Systemic inflammatory response syndrome

TIPS:

Transjugular portosystemic shunt

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

VIP:

Vasoactive intestinal polypeptide

References

  1. D’amico G, Pasta L, Morabito A, et al. Competing risks and prognostic stages of cirrhosis: a 25-year inception cohort study of 494 patients. Aliment Pharmacol Ther. 2014;39:1180–1193.

    Article  PubMed  Google Scholar 

  2. Zipprich A, Garcia-Tsao G, Rogowski S, Fleig WE, Seufferlein T, Dollinger MM. Prognostic indicators of survival in patients with compensated and decompensated cirrhosis. Liver Int. 2012;32:1407–1414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bajaj JS, O’Leary JG, Reddy KR, et al. Survival in infection-related acute-on-chronic liver failure is defined by extra-hepatic organ failures. Hepatology. 2014;60:250–256.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25:195–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Buck M, Garcia-Tsao G, Groszmann RJ, et al. Novel inflammatory biomarkers of portal pressure in compensated cirrhosis patients. Hepatology. 2014;59:1052–1059.

    Article  CAS  PubMed  Google Scholar 

  6. Rockey DC. The cell and molecular biology of hepatic fibrogenesis. Clinical and therapeutic implications. Clin Liver Dis. 2000;4:319–355.

    Article  CAS  PubMed  Google Scholar 

  7. Matuchansky C. Bacterial translocation in liver cirrhosis: site and role in fibrogenesis. J Hepatol. 2014;3:709–710.

    Article  Google Scholar 

  8. Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin Liver Dis. 2008;28:26–42.

    Article  CAS  PubMed  Google Scholar 

  9. Gines P, Fernandez J, Durand F, Saliba F. Management of critically-ill cirrhotic patients. J Hepatol. 2012;56:S13–S24.

    Article  CAS  PubMed  Google Scholar 

  10. Moreau R, Jalan R, Gines P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144:1426–1437.

    Article  PubMed  Google Scholar 

  11. Moreau R, Arroyo V. Acute on chronic liver failure: a new clinical entity. Clin Gastroenterol Hepatol 2015;13:836–841.

    Article  PubMed  Google Scholar 

  12. Marra F, Parola M. Cells in the liver—functions in health and disease. In: Gines P, Kamath PS, Arroyo V, eds. Chronic liver failure. Mechanisms and management. New York: Springer; 2011:3–32.

    Chapter  Google Scholar 

  13. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S. Necrotic death pathway in Fas receptor signaling. J Cell Biol. 2000;151:1247–1256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Henriksen JH. Degradation of bioactive substances: physiology and pathophysiology. Boca Raton: CRC Press; 1991.

    Google Scholar 

  16. Gerbes AL, Witthaut R, Gulberg V, Thibault G, Bilzer M, Jungst D. Role of the liver in splanchnic extraction of atrial natriuretic factor in the rat. Hepatology. 1992;16:790–793.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–172.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sethasine S, Jain D, Groszmann RJ, Garcia-Tsao G. Quantitative histological-hemodynamic correlations in cirrhosis. Hepatology. 2012;55:1146–1153.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Rockey DC. Hepatic fibrosis, stellate cells, and portal hypertension. Clin Liver Dis. 2006;10:459–479.

    Article  PubMed  Google Scholar 

  20. Bosch J, Garcia-Pagan JC. Complications of cirrhosis. I. Portal hypertension. J Hepatol. 2000;32:141–156.

    Article  CAS  PubMed  Google Scholar 

  21. Albillos A, Banares R, Gonzalez M, et al. The extent of the collateral circulation influences the postprandial increase in portal pressure in cirrhotic patient. Gut. 2006;56:259–264.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Berzigotti A, De Gottardi A, Vukotic R, et al. Effect of meal ingestion on liver stiffness in patients with cirrhosis and portal hypertension. PLoS ONE. 2013;8:e58742.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bendtsen F, Krag A, Møller S. Treatment of acute variceal bleeding. Dig Liver Dis. 2008;40:328–336.

    Article  CAS  PubMed  Google Scholar 

  24. Bendtsen F, Simonsen L, Henriksen JH. Effect on hemodynamics of a liquid meal alone and in combination with propranolol in cirrhosis. Gastroenterology. 1992;102:1017–1023.

    CAS  PubMed  Google Scholar 

  25. Møller S, Henriksen JH. The systemic circulation in cirrhosis. In: Gines P, Arroyo V, Rodes J, Schrier RW, eds. Ascites and renal dysfunction in liver disease. Malden: Blackwell; 2005:139–155.

    Google Scholar 

  26. Møller S, Bendtsen F, Henriksen JH. Vasoactive substances in the circulatory dysfunction of cirrhosis. Scand J Clin Lab Invest. 2001;61:421–429.

    Article  PubMed  Google Scholar 

  27. Møller S, Hobolth L, Winkler C, Bendtsen F, Christensen E. Determinants of the hyperdynamic circulation and central hypovolaemia in cirrhosis. Gut. 2011;60:1254–1259.

    Article  PubMed  Google Scholar 

  28. Shawcross DL, Austin MJ, Abeles RD, et al. The impact of organ dysfunction in cirrhosis: survival at a cost? J Hepatol. 2012;56:1054–1062.

    Article  PubMed  Google Scholar 

  29. Angeli P, Sanyal A, Møller S, et al. Current limits and future challenges in the management of renal dysfunction in patients with cirrhosis: report from the International Club of Ascites. Liver Int. 2013;33:16–23.

    Article  CAS  PubMed  Google Scholar 

  30. Arroyo V, Colmenero J. Ascites and hepatorenal syndrome in cirrhosis: pathophysiological basis of therapy and current management. J Hepatol. 2003;38:S69–S89.

    Article  PubMed  Google Scholar 

  31. Iwakiri Y. Endothelial dysfunction in the regulation of cirrhosis and portal hypertension. Liver Int. 2012;32:199–213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Langer DA, Shah VH. Nitric oxide and portal hypertension: interface of vasoreactivity and angiogenesis. J Hepatol. 2006;44:209–216.

    Article  CAS  PubMed  Google Scholar 

  33. Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis—current status and future directions. J Hepatol. 2014;61:912–924.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35:478–491.

    Article  CAS  PubMed  Google Scholar 

  35. Møller S, Bendtsen F, Schifter S, Henriksen JH. Relation of calcitonin gene-related peptide to systemic vasodilatation and central hypovolaemia in cirrhosis. Scand J Gastroenterol. 1996;31:928–933.

    Article  PubMed  Google Scholar 

  36. Hori N, Okanoue T, Sawa Y, Kashima K. Role of calcitonin gene-related peptide in the vascular system on the development of the hyperdynamic circulation in conscious cirrhotic rats. J Hepatol. 1997;26:1111–1119.

    Article  CAS  PubMed  Google Scholar 

  37. Guevara M, Gines P, Jimenez W, et al. Increased adrenomedullin levels in cirrhosis: relationship with hemodynamic abnormalities and vasoconstrictor systems. Gastroenterology. 1998;114:336–343.

    Article  CAS  PubMed  Google Scholar 

  38. Batkai S, Jarai Z, Wagner JA, et al. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med. 2001;7:827–832.

    Article  CAS  PubMed  Google Scholar 

  39. Moezi L, Gaskari SA, Lee SS. Endocannabinoids and liver disease. v. Endocannabinoids as mediators of vascular and cardiac abnormalities in cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2008;295:G649–G653.

    Article  CAS  PubMed  Google Scholar 

  40. Ros J, Claria J, To-Figueras J, et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology. 2002;122:85–93.

    Article  CAS  PubMed  Google Scholar 

  41. Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43:98–103.

    Article  CAS  PubMed  Google Scholar 

  42. Huang HC, Haq O, Utsumi T, et al. Intestinal and plasma VEGF levels in cirrhosis: the role of portal pressure. J Cell Mol Med. 2012;16:1125–1133.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Baldassarre M, Giannone FA, Napoli L, et al. The endocannabinoid system in advanced liver cirrhosis: pathophysiological implication and future perspectives. Liver Int. 2013;33:1298–1308.

    Article  CAS  PubMed  Google Scholar 

  44. Wiese S, Mortensen C, Gotze JP, et al. Cardiac and proinflammatory markers predict prognosis in cirrhosis. Liver Int. 2014;34:e19–e30.

    Article  CAS  PubMed  Google Scholar 

  45. Møller S, Henriksen JH. Cardiovascular complications of cirrhosis. Gut. 2008;57:268–278.

    Article  PubMed  CAS  Google Scholar 

  46. Iwakiri Y. Endothelial dysfunction in the regulation of cirrhosis and portal hypertension. Liver Int. 2011;32:199–213.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Møller S, Iversen JS, Krag A, Bie P, Kjaer A, Bendtsen F. Reduced baroreflex sensitivity and pulmonary dysfunction in alcoholic cirrhosis: effect of hyperoxia. Am J Physiol Gastrointest Liver Physiol. 2010;299:G784–G790.

    Article  PubMed  CAS  Google Scholar 

  48. Bolognesi M, Di Pascoli M, Verardo A, Gatta A. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J Gastroenterol. 2014;20:2555–2563.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Tage-Jensen U, Henriksen JH, Christensen E, Widding A, Ring-Larsen H, Christensen NJ. Plasma catecholamine level and portal venous pressure as guides to prognosis in patients with cirrhosis. J Hepatol. 1988;6:350–358.

    Article  CAS  PubMed  Google Scholar 

  50. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006;43:S121–S131.

    Article  CAS  PubMed  Google Scholar 

  51. Kiszka-Kanowitz M, Henriksen JH, Møller S, Bendtsen F. Blood volume distribution in patients with cirrhosis: aspects of the dual-head gamma-camera technique. J Hepatol. 2001;35:605–612.

    Article  CAS  PubMed  Google Scholar 

  52. Henriksen JH, Bendtsen F, Gerbes AL, Christensen NJ, Ring-Larsen H, Sørensen TIA. Estimated central blood volume in cirrhosis—relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor. Hepatology. 1992;16:1163–1170.

    Article  CAS  PubMed  Google Scholar 

  53. Brinch K, Møller S, Bendtsen F, Becker U, Henriksen JH. Plasma volume expansion by albumin in cirrhosis. Relation to blood volume distribution, arterial compliance and severity of disease. J Hepatol. 2003;39:24–31.

    Article  CAS  PubMed  Google Scholar 

  54. Schrier RW. Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am J Med. 2006;119:S47–S53.

    Article  CAS  PubMed  Google Scholar 

  55. Møller S, Henriksen JH, Bendtsen F. Central- and non-central blood volumes in cirrhosis. Relation to anthropometrics and gender. Am J Physiol Gastrointest Liver Physiol. 2003;284:G970–G979.

    Article  PubMed  Google Scholar 

  56. Ruiz-Del-Arbol L, Monescillo A, Arocena C, et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology. 2005;42:439–447.

    Article  CAS  PubMed  Google Scholar 

  57. Krag A, Bendtsen F, Henriksen JH, Møller S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut. 2010;59:105–110.

    Article  CAS  PubMed  Google Scholar 

  58. Braillon A, Cales P, Valla D, Gaudy D, Geoffroy P, Lebrec D. Influence of the degree of liver failure on systemic and splanchnic haemodynamics and on response to propranolol in patients with cirrhosis. Gut. 1986;27:1204–1209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Bendtsen F, Henriksen JH, Sørensen TIA. Long-term effects of oral propranolol on splanchnic and systemic haemodynamics in patients with cirrhosis and oesophageal varices. Scand J Gastroenterol. 1991;26:933–939.

    Article  CAS  PubMed  Google Scholar 

  60. Krag A, Møller S, Burroughs AK, Bendtsen F. Betablockers induce cardiac chronotropic incompetence. J Hepatol. 2012;56:298–299.

    Article  PubMed  Google Scholar 

  61. Ge PS, Runyon BA. The changing role of beta-blocker therapy in patients with cirrhosis. J Hepatol. 2013;60:643–653.

    Article  PubMed  CAS  Google Scholar 

  62. Tripathi D, Hayes P. Beta blockers in portal hypertension: new developments and controversies. Liver Int. 2013;34:655–667.

    Article  PubMed  CAS  Google Scholar 

  63. Llach J, Ginés P, Arroyo V, et al. Prognostic value of arterial pressure, endogenous vasoactive systems, and renal function in cirrhotic patients admitted to the hospital for the treatment of ascites. Gastroenterology. 1988;94:482–487.

    CAS  PubMed  Google Scholar 

  64. Vilar GE, Torres GA, Calzadilla BL, Yasells GA, Sanchez RY, Perez YM. Arterial blood pressure is closely related to ascites development in compensated HCV-related cirrhosis. PLoS ONE. 2014;9:e95736.

    Article  Google Scholar 

  65. Fasolato S, Angeli P, Dallagnese L, et al. Renal failure and bacterial infections in patients with cirrhosis: Epidemiology and clinical features. Hepatology. 2007;45:223–229.

    Article  PubMed  Google Scholar 

  66. Bajaj JS, O’Leary JG, Wong F, Reddy KR, Kamath PS. Bacterial infections in end-stage liver disease: current challenges and future directions. Gut. 2012;61:1219–1225.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Fernandez J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol. 2012;56:S1–12.

    Article  CAS  PubMed  Google Scholar 

  68. Reiberger T, Ferlitsch A, Payer BA, et al. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J Hepatol. 2013;58:911–921.

    Article  CAS  PubMed  Google Scholar 

  69. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60:197–209.

    Article  PubMed  Google Scholar 

  70. Wiest R, Krag A, Gerbes A. Spontaneous bacterial peritonitis: recent guidelines and beyond. Gut. 2012;61:297–310.

    Article  CAS  PubMed  Google Scholar 

  71. Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology. 2005;41:422–433.

    Article  CAS  PubMed  Google Scholar 

  72. Gustot T, Durand F, Lebrec D, Vincent JL, Moreau R. Severe sepsis in cirrhosis. Hepatology. 2009;50:2022–2033.

    Article  CAS  PubMed  Google Scholar 

  73. Mehta G, Gustot T, Mookerjee RP, et al. Inflammation and portal hypertension - The undiscovered country. J Hepatol. 2014;61:155–163.

    Article  PubMed  Google Scholar 

  74. Leithead JA, Ferguson JW, Bates CM, et al. The systemic inflammatory response syndrome is predictive of renal dysfunction in patients with non-paracetamol-induced acute liver failure. Gut. 2009;58:443–449.

    Article  CAS  PubMed  Google Scholar 

  75. Follo A, Llovet JM, Navasa M, et al. Renal impairment after spontaneous bacterial peritonitis in cirrhosis: incidence, clinical course, predictive factors and prognosis. Hepatology. 1994;20:1495–1501.

    Article  CAS  PubMed  Google Scholar 

  76. Fagundes C, Gines P. Hepatorenal syndrome: a severe, but treatable, cause of kidney failure in cirrhosis. Am J Kidney Dis. 2012;59:874–885.

    Article  PubMed  Google Scholar 

  77. Mehta G, Mookerjee RP, Sharma V, Jalan R. Systemic inflammation is associated with increased intrahepatic resistance and mortality in alcohol-related acute-on-chronic liver failure. Liver Int. 2015;35:724–734.

    Article  CAS  PubMed  Google Scholar 

  78. Møller S, Hove JD, Dixen U, Bendtsen F. New insights into cirrhotic cardiomyopathy. Int J Cardiol. 2013;167:1101–1108.

    Article  PubMed  Google Scholar 

  79. Zambruni A, Trevisani F, Caraceni P, Bernardi M. Cardiac electrophysiological abnormalities in patients with cirrhosis. J Hepatol. 2006;2006:994–1002.

    Article  CAS  Google Scholar 

  80. Møller S, Henriksen JH. Cirrhotic cardiomyopathy. J Hepatol. 2010;53:179–190.

    Article  PubMed  Google Scholar 

  81. Rabie RN, Cazzaniga M, Salerno F, Wong F. The use of E/A ratio as a predictor of outcome in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt. Am J Gastroenterol. 2009;104:2458–2466.

    Article  PubMed  Google Scholar 

  82. Saner FH, Neumann T, Canbay A, et al. High brain-natriuretic peptide level predicts cirrhotic cardiomyopathy in liver transplant patients. Transpl Int. 2011;24:425–432.

    Article  CAS  PubMed  Google Scholar 

  83. Wong F, Girgrah N, Graba J, Allidina Y, Liu P, Blendis L. The cardiac response to exercise in cirrhosis. Gut. 2001;49:268–275.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Krag A, Bendtsen F, Mortensen C, Henriksen JH, Møller S. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis. Eur J Gastroenterol Hepatol. 2010;22:1085–1092.

    Article  CAS  PubMed  Google Scholar 

  85. Kazankov K, Holland-Fischer P, Andersen NH, et al. Resting myocardial dysfunction in cirrhosis quantified by tissue Doppler imaging. Liver Int. 2011;31:534–540.

    Article  PubMed  Google Scholar 

  86. Sampaio F, Pimenta J, Bettencourt N, et al. Systolic and diastolic dysfunction in cirrhosis: a tissue-Doppler and speckle tracking echocardiography study. Liver Int. 2013;33:1158–1165.

    Article  CAS  PubMed  Google Scholar 

  87. Pozzi M, Redaelli E, Ratti L, et al. Time-course of diastolic dysfunction in different stages of chronic HCV related liver diseases. Minerva Gastroenterol Dietol. 2005;51:179–186.

    CAS  PubMed  Google Scholar 

  88. Gaskari SA, Honar H, Lee SS. Therapy insight: cirrhotic cardiomyopathy. Nat Clin Pract Gastroenterol Hepatol. 2006;3:329–337.

    Article  CAS  PubMed  Google Scholar 

  89. Møller S, Henriksen JH. Cardiovascular dysfunction in cirrhosis. Pathophysiological evidence of a cirrhotic cardiomyopathy. Scand J Gastroenterol. 2001;36:785–794.

    Article  PubMed  Google Scholar 

  90. Torregrosa M, Aguade S, Dos L, et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol. 2005;42:68–74.

    Article  PubMed  Google Scholar 

  91. Henriksen JH, Bendtsen F, Hansen EF, Møller S. Acute non-selective beta-adrenergic blockade reduces prolonged frequency-adjusted Q-T interval (QTc) in patients with cirrhosis. J Hepatol. 2004;40:239–246.

    Article  CAS  PubMed  Google Scholar 

  92. Henriksen JH, Gøetze JP, Fuglsang S, Christensen E, Bendtsen F, Møller S. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease. Gut. 2003;52:1511–1517.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Genovesi S, Prata Pizzala DM, Pozzi M, et al. QT interval prolongation and decreased heart rate variability in cirrhotic patients: relevance of hepatic venous pressure gradient and serum calcium. Clin Sci (Lond). 2009;116:851–859.

    Article  CAS  Google Scholar 

  94. Bernardi M, Maggioli C, Dibra V, Zaccherini G. QT interval prolongation in liver cirrhosis: innocent bystander or serious threat? Expert Rev Gastroenterol Hepatol. 2012;6:57–66.

    Article  PubMed  Google Scholar 

  95. Cavasi A, Cavasi E, Grigorescu M, Sitar-Taut A. Relationship between NT-proBNP and cardio-renal dysfunction in patients with advanced liver cirrhosis. J Gastrointestin Liver Dis. 2014;23:51–56.

    PubMed  Google Scholar 

  96. Mohamed R, Forsey PR, Davies MK, Neuberger JM. Effect of liver transplantation on QT interval prolongation and autonomic dysfunction in end-stage liver disease. Hepatology. 1996;23:1128–1134.

    Article  CAS  PubMed  Google Scholar 

  97. Møller S, Bernardi M. Interactions of the heart and the liver. Eur Heart J. 2013;34:2804–2811.

    Article  PubMed  Google Scholar 

  98. Pellicori P, Torromeo C, Calicchia A, et al. Does cirrhotic cardiomyopathy exist? 50 years of uncertainty. Clin Res Cardiol. 2013;102:859–864.

    Article  PubMed  Google Scholar 

  99. Dumcke CW, Møller S. Autonomic dysfunction in cirrhosis and portal hypertension. Scand J Clin Lab Invest. 2008;68:437–447.

    Article  PubMed  Google Scholar 

  100. Dahl EK, Møller S, Kjaer A, Petersen CL, Bendtsen F, Krag A. Diastolic and autonomic dysfunction in early cirrhosis: a dobutamine stress study. Scand J Gastroenterol. 2014;49:362–372.

    Article  PubMed  Google Scholar 

  101. Ates F, Topal E, Kosar F, et al. The relationship of heart rate variability with severity and prognosis of cirrhosis. Dig Dis Sci. 2006;51:1614–1618.

    Article  PubMed  Google Scholar 

  102. Wiese S, Hove JD, Bendtsen F, Møller S. Cirrhotic cardiomyopathy: pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol. 2014;11:177–186.

    Article  CAS  PubMed  Google Scholar 

  103. Møller S, Iversen JS, Henriksen JH, Bendtsen F. Reduced baroreflex sensitivity in alcoholic cirrhosis:relations to hemodynamics and humoral systems. Am J Physiol Heart Circ Physiol. 2007;292:H2966–H2972.

    Article  PubMed  CAS  Google Scholar 

  104. Song JG, Kim YK, Shin WJ, Hwang GS. Changes in cardiovagal baroreflex sensitivity are related to increased ventricular mass in patients with liver cirrhosis. Circ J. 2012;76:2807–2813.

    Article  PubMed  Google Scholar 

  105. Møller S, Mortensen C, Bendtsen F, Jensen LT, Gotze JP, Madsen JL. Cardiac sympathetic imaging with mIBG in cirrhosis and portal hypertension: Relation to autonomic and cardiac function. Am J Physiol Gastrointest Liver Physiol. 2012;303:G1228–G1235.

    Article  PubMed  CAS  Google Scholar 

  106. Jalan R, Fernandez J, Wiest R, et al. Bacterial infections in cirrhosis. A position statement based on the EASL special conference 2013. J Hepatol. 2014;60:1310–1324.

    Article  PubMed  Google Scholar 

  107. Grace JA, Angus PW. Hepatopulmonary syndrome: update on recent advances in pathophysiology, investigation and treatment. J Gastroenterol Hepatol. 2013;28:313–319.

    Article  CAS  Google Scholar 

  108. Koch DG, Fallon MB. Hepatopulmonary syndrome. Clin Liver Dis. 2014;18:407–420.

    Article  PubMed  Google Scholar 

  109. Møller S, Hillingsø J, Christensen E, Henriksen JH. Arterial hypoxaemia in cirrhosis: fact or fiction? Gut. 1998;42:868–874.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Scarlata S, Conte ME, Cesari M, et al. Gas exchanges and pulmonary vascular abnormalities at different stages of chronic liver disease. Liver Int. 2011;31:525–533.

    Article  PubMed  Google Scholar 

  111. Gaines DI, Fallon MB. Hepatopulmonary syndrome. Liver Int. 2004;24:397–401.

    Article  PubMed  Google Scholar 

  112. Rodriguez-Roisin R, Krowka MJ, Herve P, Fallon MB. Pulmonary-hepatic vascular disorders (PHD). Eur Respir J. 2004;24:861–880.

    Article  CAS  PubMed  Google Scholar 

  113. Deibert P, Allgaier HP, Stefanie L, et al. Hepatopulmonary syndrome in patients with chronic liver disease: role of pulse oximetry. BMC Gastroenterol. 2006;6:15.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Møller S, Krag A, Madsen JL, Henriksen JH, Bendtsen F. Pulmonary dysfunction and hepatopulmonary syndrome in cirrhosis and portal hypertension. Liver Int. 2009;29:1528–1537.

    Article  PubMed  CAS  Google Scholar 

  115. Machicao VI, Fallon MB. Hepatopulmonary syndrome. Semin Respir Crit Care Med. 2012;33:11–16.

    Article  PubMed  Google Scholar 

  116. Horvatits T, Fuhrmann V. Therapeutic options in pulmonary hepatic vascular diseases. Expert Rev Clin Pharmacol. 2014;7:31–42.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang J, Fallon MB. Hepatopulmonary syndrome: update on pathogenesis and clinical features. Nat Rev Gastroenterol Hepatol. 2012;130:1136–1144.

    Google Scholar 

  118. Machicao VI, Balakrishnan M, Fallon MB. Pulmonary complications in chronic liver disease. Hepatology. 2014;59:1627–1637.

    Article  PubMed  Google Scholar 

  119. Grace JA, Angus PW. Hepatopulmonary syndrome: update on recent advances in pathophysiology, investigation, and treatment. J Gastroenterol Hepatol. 2013;28:213–219.

    Article  CAS  PubMed  Google Scholar 

  120. Krishnamurthy GT, Krishnamurthy S. Nuclear hepatology. A textbook of hepatobiliary diseases. Berlin: Springer; 2000.

    Google Scholar 

  121. Schwartz JM, Beymer C, Althaus SJ, et al. Cardiopulmonary consequences of transjugular intrahepatic portosystemic shunts: Role of increased pulmonary artery pressure. J Clin Gastroenterol. 2004;38:590–594.

    Article  PubMed  Google Scholar 

  122. Boyer TD, Haskal ZJ. The role of transjugular intrahepatic portosystemic shunt in the management of portal hypertension. Hepatology. 2005;41:386–400.

    Article  PubMed  Google Scholar 

  123. Iyer VN, Swanson KL, Cartin-Ceba R, et al. Hepatopulmonary syndrome: Favorable outcomes in the MELD exception era. Hepatology. 2013;57:2427–2435.

    Article  PubMed  Google Scholar 

  124. Pascasio JM, Grilo I, Lopez-Pardo FJ, et al. Prevalence and severity of hepatopulmonary syndrome and Its Influence on survival in cirrhotic patients evaluated for liver transplantation. Am J Transplant. 2014;14:1391–1399.

    Article  CAS  PubMed  Google Scholar 

  125. Katsuta Y, Zhang XJ, Kato Y, et al. Hemodynamic features and impaired arterial oxygenation in patients with portopulmonary hypertension. Hepatol Res. 2005;32:79–88.

    Article  PubMed  Google Scholar 

  126. Kawut SM, Taichman DB, Ahya VN, et al. Hemodynamics and survival of patients with portopulmonary hypertension. Liver Transpl. 2005;11:1107–1111.

    Article  PubMed  Google Scholar 

  127. Luo B, Liu L, Tang L, et al. Increased pulmonary vascular endothelin B receptor expression and responsiveness to endothelin-1 in cirrhotic and portal hypertensive rats: a potential mechanism in experimental hepatopulmonary syndrome. J Hepatol. 2003;38:556–563.

    Article  CAS  PubMed  Google Scholar 

  128. Giusca S, Jinga M, Jurcut C, Jurcut R, Serban M, Ginghina C. Portopulmonary hypertension: from diagnosis to treatment. Eur J Intern Med. 2011;22:441–447.

    Article  PubMed  Google Scholar 

  129. Koch DG, Bogatkevich G, Ramshesh V, Lemasters JJ, Uflacker R, Reuben A. Elevated levels of endothelin-1 in hepatic venous blood are associated with intrapulmonary vasodilatation in humans. Dig Dis Sci. 2012;57:516–523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Krowka MJ. Portopulmonary hypertension. Semin Respir Crit Care Med. 2012;33:17–25.

    Article  PubMed  Google Scholar 

  131. Krowka MJ. Portopulmonary hypertension and the issue of survival. Liver Transpl. 2005;11:1026–1027.

    Article  PubMed  Google Scholar 

  132. Kuo PC, Plotkin JS, Johnson LB, et al. Distinctive clinical features of portopulmonary hypertension. Chest. 1997;112:980–986.

    Article  CAS  PubMed  Google Scholar 

  133. Swanson KL, Krowka MJ. Screen for portopulmonary hypertension, especially in liver transplant candidates. Cleve Clin J Med. 2008;75:121–133.

    Article  PubMed  Google Scholar 

  134. Hoeper MM, Seyfarth HJ, Hoeffken G, et al. Experience with inhaled iloprost and bosentan in portopulmonary hypertension. Eur Respir J. 2007;30:1096–1102.

    Article  CAS  PubMed  Google Scholar 

  135. Grander W, Eller P, Fuschelberger R, Tilg H. Bosentan treatment of portopulmonary hypertension related to liver cirrhosis owing to hepatitis C. Eur J Clin Invest. 2006;36:67–70.

    Article  PubMed  Google Scholar 

  136. Hollatz TJ, Musat A, Westphal S, et al. Treatment with sildenafil and treprostinil allows successful liver transplantation of patients with moderate to severe portopulmonary hypertension. Liver Transpl. 2012;18:686–695.

    Article  PubMed  Google Scholar 

  137. Krowka MJ. Hepatopulmonary syndrome and portopulmonary hypertension: implications for liver transplantation. Clin Chest Med. 2005;26:587–597.

    Article  PubMed  Google Scholar 

  138. Murray KF, Carithers RL Jr. AASLD practice guidelines: evaluation of the patient for liver transplantation. Hepatology. 2006;41:1407–1432.

    Article  Google Scholar 

  139. Safdar Z, Bartolome S, Sussman N. Portopulmonary hypertension: an update. Liver Transpl. 2012;18:881–891.

    Article  PubMed  Google Scholar 

  140. Koh C, Zhao X, Samala N, Sakiani S, Liang TJ, Talwalkar JA. AASLD clinical practice guidelines: a critical review of scientific evidence and evolving recommendations. Hepatology. 2013;58:2142–2152.

    Article  PubMed Central  PubMed  Google Scholar 

  141. Rognant N, Lemoine S. Evaluation of renal function in patients with cirrhosis: Where are we now? World J Gastroenterol. 2014;20:2533–2541.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  142. Mindikoglu AL, Dowling TC, Weir MR, Seliger SL, Christenson RH, Magder LS. Performance of chronic kidney disease epidemiology collaboration creatinine-cystatin C equation for estimating kidney function in cirrhosis. Hepatology. 2014;59:1532–1542.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Krag A, Bendtsen F, Burroughs AK, Møller S. The cardiorenal link in advanced cirrhosis. Med Hypotheses. 2012;79:53–55.

    Article  PubMed  Google Scholar 

  144. Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology. 2008;48:2064–2077.

    Article  CAS  PubMed  Google Scholar 

  145. Piano S, Rosi S, Maresio G, et al. Evaluation of the acute kidney injury network criteria in hospitalized patients with cirrhosis and ascites. J Hepatol. 2013;59:482–489.

    Article  PubMed  Google Scholar 

  146. Belcher JM, Parikh CR, Garcia-Tsao G. Acute kidney injury in patients with cirrhosis: perils and promise. Clin Gastroenterol Hepatol. 2013;11:1550–1558.

    Article  CAS  PubMed  Google Scholar 

  147. Cholongitas E, Arsos G, Goulis J, et al. Glomerular filtration rate is an independent factor of mortality in patients with decompensated cirrhosis. Hepatol Res. 2014;44:145–155.

    Article  CAS  Google Scholar 

  148. Fabrizi F, Aghemo A, Messa P. Hepatorenal syndrome and novel advances in its management. Kidney Blood Press Res. 2013;37:588–601.

    Article  PubMed  CAS  Google Scholar 

  149. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    Article  PubMed Central  PubMed  Google Scholar 

  150. Belcher JM, Sanyal AJ, Peixoto AJ, et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology. 2014;60:622–632.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Møller S, Krag A, Bendtsen F. Kidney injury in cirrhosis: Pathophysiological and therapeutic aspects of hepatorenal syndromes. Liver Int. 2014;34:1153–1163.

    Article  PubMed  CAS  Google Scholar 

  152. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification: Am J Kidney Dis 2002;39:S1–S266.

  153. Trawale JM, Paradis V, Rautou PE, et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int. 2010;3:725–732.

    Article  CAS  Google Scholar 

  154. Wong F, Nadim MK, Kellum JA, et al. Working Party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut. 2011;60:702–709.

    Article  PubMed  Google Scholar 

  155. Wong F, Murray P. Kidney damage biomarkers: novel tools for the diagnostic assessment of acute kidney injury in cirrhosis. Hepatology. 2014;60:455–457.

    Article  CAS  PubMed  Google Scholar 

  156. Jalan R, Gines P, Olson JC, et al. Acute-on chronic liver failure. J Hepatol. 2012;57:1336–1348.

    Article  PubMed  Google Scholar 

  157. Fede G, D’amico G, Arvaniti V, et al. Renal failure and cirrhosis: a systematic review of mortality and prognosis. J Hepatol. 2012;56:810–818.

    Article  PubMed  Google Scholar 

  158. Gines P, Schrier RW. Renal failure in cirrhosis. N Engl J Med. 2009;361:1279–1290.

    Article  CAS  PubMed  Google Scholar 

  159. Gines P, Angeli P, Lenz K, et al. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417.

    Article  Google Scholar 

  160. Angeli P, Gines P. Hepatorenal syndrome, MELD score and liver transplantation: an evolving issue with relevant implications for clinical practice. J Hepatol. 2012;57:1135–1140.

    Article  PubMed  Google Scholar 

  161. Barreto R, Fagundes C, Guevara M, et al. Type-1 hepatorenal syndrome associated with infections in cirrhosis: natural history, outcome of kidney function, and survival. Hepatology. 2014;59:1505–1513.

    Article  PubMed  Google Scholar 

  162. Salerno F, Gerbes A, Gines P, Wong F, Arroyo V. Diagnosis, prevention and treatment of the hepatorenal syndrome in cirrhosis. A consensus workshop of the international ascites club. Gut. 2007;56:1310–1318.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Stadlbauer VP, Wright GA, Banaji M, et al. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology. 2008;134:111–119.

    Article  PubMed  Google Scholar 

  164. Møller S, Krag A: Cardiorenal syndrome: A new entity? In Gerbes A, (ed) Hyponatremia and hepatorenal syndrome: progress in treatment. Front Gastrointest Res. Basel, Karger, 2011, pp 102–111.

  165. Schrier RW. Decreased effective blood volume in edematous disorders: what does this mean? J Am Soc Nephrol. 2007;18:2028–2031.

    Article  PubMed  Google Scholar 

  166. Acevedo J, Fernandez J, Prado V, et al. Relative adrenal insufficiency in decompensated cirrhosis. Relationship to short-term risk of severe sepsis, hepatorenal syndrome and death. Hepatology. 2013;58:1757–1765.

    Article  CAS  PubMed  Google Scholar 

  167. Trifan A, Chiriac S, Stanciu C. Update on adrenal insufficiency in patients with liver cirrhosis. World J Gastroenterol. 2013;19:445–456.

    Article  PubMed Central  PubMed  Google Scholar 

  168. Theocharidou E, Krag A, Bendtsen F, Moller S, Burroughs AK. Cardiac dysfunction in cirrhosis—does adrenal function play a role? A hypothesis. Liver Int. 2012;32:1327–1332.

    Article  PubMed  Google Scholar 

  169. Galbois A, Thabut D. Adrenal insufficiency: diagnosis in patients with liver cirrhosis is difficult. J Hepatol. 2011;54:590–591.

    Article  Google Scholar 

  170. Galbois A, Rudler M, Massard J, et al. Assessment of adrenal function in cirrhotic patients: salivary cortisol should be preferred. J Hepatol. 2010;52:839–845.

    Article  CAS  PubMed  Google Scholar 

  171. Amarapurkar DN. Adrenal function in cirrhosis: the pendulum swings. J Gastroenterol Hepatol. 2012;27:1543–1544.

    Article  PubMed  Google Scholar 

  172. Almdal T, Schroeder T, Ranek L. Cerebral blood flow and liver function in patients with encephalopathy due to acute and chronic liver diseases. Scand J Gastroenterol. 1989;24:299–303.

    Article  CAS  PubMed  Google Scholar 

  173. Larsen FS, Olsen KS, Ejlersen E, Hansen BA, Paulson OB, Knudsen GM. Cerebral blood flow autoregulation and transcranial doppler sonography in patients with cirrhosis. Hepatology. 1995;22:730–736.

    CAS  PubMed  Google Scholar 

  174. O’Carroll RE, Hayes PC, Ebmeier KP, et al. Regional cerebral blood flow and cognitive function in patients with chronic liver disease. Lancet. 1991;337:1250–1253.

    Article  PubMed  Google Scholar 

  175. Ede RJ, Gimson AES, Bihari D, Williams R. Controlled hyperventilation in the prevention of cerebral oedema in fulminant hepatic failure. J Hepatol. 1986;2:43–51.

    Article  CAS  PubMed  Google Scholar 

  176. Larsen FS, Knudsen GM, Hansen BA. Pathophysiological changes in cerebral circulation, oxidative metabolism and blood-brain barrier in patients with acute liver failure. Tailored cerebral oxygen utilization. J Hepatol. 1997;27:231–238.

    Article  CAS  PubMed  Google Scholar 

  177. Frokjaer VG, Strauss GI, Mehlsen J, Knudsen GM, Rasmussen V, Larsen FS. Autonomic dysfunction and impaired cerebral autoregulation in cirrhosis. Clin Auton Res. 2006;16:208–216.

    Article  PubMed  Google Scholar 

  178. Lagi A, Lavilla G, Barletta G, et al. Cerebral autoregulation in patients with cirrhosis and ascites: a transcranial doppler study. J Hepatol. 1997;27:114–120.

    Article  CAS  PubMed  Google Scholar 

  179. Dam M, Burra P, Tedeschi U, et al. Regional cerebral blood flow changes in patients with cirrhosis assessed with Tc-99 m-HM-PAO single-photon emission computed tomography: effect of liver transplantation. J Hepatol. 1998;29:78–84.

    Article  CAS  PubMed  Google Scholar 

  180. Jalan R, Newby DE, Damink SW, Redhead DN, Hayes PC, Lee A. Acute changes in cerebral blood flow and metabolism during portasystemic shunting. Liver Transpl. 2001;7:274–278.

    Article  CAS  PubMed  Google Scholar 

  181. Zheng G, Zhang LJ, Zhong J, et al. Cerebral blood flow measured by arterial-spin labeling MRI: a useful biomarker for characterization of minimal hepatic encephalopathy in patients with cirrhosis. Eur J Radiol. 2013;82:1981–1988.

    Article  PubMed  Google Scholar 

  182. Zheng G, Zhang LJ, Wang Z, et al. Changes in cerebral blood flow after transjugular intrahepatic portosystemic shunt can help predict the development of hepatic encephalopathy: an arterial spin labeling MR study. Eur J Radiol. 2012;81:3851–3856.

    Article  PubMed  Google Scholar 

  183. Zheng G, Zhang LJ, Cao Y, et al. Transjugular intrahepatic portosystemic shunt induced short- and long-term cerebral blood flow variations in cirrhotic patients: an arterial spin labeling MRI study. Metab Brain Dis. 2013;28:463–471.

    Article  PubMed  Google Scholar 

  184. Asrani SK, O’Leary JG. Acute-on-chronic liver failure. Clin Liver Dis. 2014;18:561–574.

    Article  PubMed Central  PubMed  Google Scholar 

  185. Kumar A, Das K, Sharma P, Mehta V, Sharma BC, Sarin SK. Hemodynamic studies in acute-on-chronic liver failure. Dig Dis Sci. 2009;54:869–878.

    Article  PubMed  Google Scholar 

  186. Liu H, Lee SS. Acute-on-chronic liver failure: the heart and systemic hemodynamics. Curr Opin Crit Care. 2011;17:190–194.

    Article  PubMed  Google Scholar 

  187. Jalan R, Saliba F, Pavesi M, et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol. 2014;61:1038–1047.

    Article  PubMed  Google Scholar 

  188. Silva PE, Fayad L, Lazzarotto C, Ronsoni MF, Bazzo ML, Colombo BS, Dantas-Correa EB, Narciso-Schiavon JL, Schiavon LL: Single-centre validation of the EASL-CLIF Consortium definition of acute-on-chronic liver failure and CLIF-SOFA for prediction of mortality in cirrhosis. Liver Int. 2014. doi: 10.1111/liv.12597.

Download references

Acknowledgments

Professor Søren Møller was supported by a grant from the Novo Nordisk Foundation and The University of Copenhagen.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Møller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Møller, S., Bendtsen, F. Cirrhotic Multiorgan Syndrome. Dig Dis Sci 60, 3209–3225 (2015). https://doi.org/10.1007/s10620-015-3752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3752-3

Keywords

Navigation