Skip to main content

Advertisement

Log in

Human ovarian tissue in-vitro culture: primordial follicle activation as a new strategy for female fertility preservation

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Cryopreservation and transplantation of ovarian tissue is the only fertility preservation option used for prepubertal girls and women who don’t have a chance for embryo or oocyte vitrification. For women with aggressive cancer, hormone-responsive malignancies, autoimmune diseases, etc. ovary transplantation cannot be performed so an alternative technology called in-vitro follicle activation is thinkable. In this method, dormant primordial follicles are activated from the resting primordial pool by in-vitro culture and enter their growth phase. Different in-vitro culture media and supplements in addition to various culturing methods have been conducted for activating these dormant follicles. Furthermore, several signaling pathways such as Hippo, phosphatidylinositol-3-kinase, and mTOR influence follicle activation. Therefore, the addition of different activators of these signaling pathways can beneficially regulate this culture system. This review summarizes the findings on different aspects of human ovarian tissue culture strategies for in-vitro follicular activation, their medium, and different factors involved in this activation. Afterward, signaling pathways important for follicle activation and their clinical applications towards improving activation in culture are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

α-MEM:

Alpha minimal essential medium

Akt1:

Protein kinase B

AMH:

Anti-Müllerian hormone

bFGF:

Basic fibroblast growth factor

BMP:

Bone morphogenetic protein

CCN:

Connective tissue growth factor (CTGF), Cystein rich protein (Cyr61), and Nephroblastoma overexpressed genes

DOR:

Diminished ovarian reserve

E2:

Estradiol

EBSS:

Earle’s balanced salt solution

ECM:

Extracellular matrix

FGF:

Fibroblast growth factor

FSH:

Follicle stimulating hormone

GDF9:

Growth differentiation factor 9

HSA:

Human serum albumin

hUC-MSC:

Human umbilical cord mesenchymal stem cells

ITS:

Insulin-transferin-selenium

IVA:

In-vitro activation

IVF:

In-vitro fertilization

LATSI1/2:

Large tumor suppressor kinases 1 and 2

mTOR:

Mammalian target of rapamycin

MST1/2:

Mammalian Ste-20 like kinases 1 and 2

PDK1:

3-Phosphoinositide dependent kinase-1

PEG:

Polyethylene glycol

PI3K:

Phosphatidylinositol 3 kinase

POI:

Premature ovarian insufficiency

PTEN:

Protein phosphatase with TENsin homolog

rpS6:

Ribosomal protein S6

S1p:

Sphingosine-1-phosphate

Smad:

Caenorhabditis elegans SMA (“small” worm phenotype) and Drosophila MAD (“Mothers Against Decapentaplegic”)

TAZ:

Transcriptional coactivator PDZ-binding motif

Tsc:

Tumor suppressor tuberous sclerosis complex

YAP:

Yes associated protein

References

  • Abir R et al (1999) Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Human 14:1299–1301

    CAS  Google Scholar 

  • Abir R et al (2001) Morphological study of fully and partially isolated early human follicles. Fertil Steril 75:141–146

    Article  CAS  PubMed  Google Scholar 

  • Abir R et al (2006) In vitro maturation of human primordial ovarian follicles: clinical significance, progress in mammals, and methods for growth evaluation. Histol Histopathol 21:887–898

    CAS  PubMed  Google Scholar 

  • Abir R et al (2010) Occasional involvement of the ovary in Ewing sarcoma. Hum Reprod 25:1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Adhikari D, Liu K (2009) Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev 30:438–464

    Article  CAS  PubMed  Google Scholar 

  • Asadi E et al (2017) Ovarian tissue culture in the presence of VEGF and fetuin stimulates follicle growth and steroidogenesis. J Endocrinol 232:205–219

    Article  CAS  PubMed  Google Scholar 

  • Bertoldo MJ et al (2018) In-vitro regulation of primordial follicle activation: challenges for fertility preservation strategies. Reprod Biomed Online 36:491–499

    Article  CAS  PubMed  Google Scholar 

  • Brännström M, Milenkovic M (2008) Advances in fertility preservation for female cancer survivors. J Nat Med 14:1182

    Article  Google Scholar 

  • Camboni A et al (2013) Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology 67:64–69

    Article  CAS  PubMed  Google Scholar 

  • Carlsson IB et al (2006a) Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction 131:641–649

    Article  CAS  PubMed  Google Scholar 

  • Carlsson IB et al (2006b) Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Human 21:2223–2227

    CAS  Google Scholar 

  • Chemaitilly W et al (2006) Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab 91:1723–1728

    Article  CAS  PubMed  Google Scholar 

  • Detti L et al (2018) Anti-Müllerian Hormone (AMH) may stall ovarian cortex function through modulation of hormone receptors other than the AMH receptor. Reprod Sci 25:1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Devine P et al (2002) In vitro ovarian tissue and organ culture: a review. J Front Biosci 7:d1979–d1989

    Article  CAS  Google Scholar 

  • Dolmans MM et al (2010) Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood 116:2908–2914

    Article  CAS  PubMed  Google Scholar 

  • Dolmans M-M et al (2019) In vitro activation prior to transplantation of human ovarian tissue: is it truly effective? Front Endocrinol 10:520

    Article  Google Scholar 

  • Donnez J et al (2011) Children born after autotransplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med 43:437–450

    Article  PubMed  Google Scholar 

  • Ernst EH et al (2017) Dormancy and activation of human oocytes from primordial and primary follicles: molecular clues to oocyte regulation. Human 32:1684–1700

    CAS  Google Scholar 

  • Fabregues F et al (2018) Pregnancy after drug-free in vitro activation of follicles and fresh tissue autotransplantation in primary ovarian insufficiency patient: a case report and literature review. J Ovarian Res 11:1–5

    Article  Google Scholar 

  • Ferreri J et al (2020) Drug-free in-vitro activation of follicles and fresh tissue autotransplantation as a therapeutic option in patients with primary ovarian insufficiency. Reprod Biomed Online 40:254–260

    Article  CAS  PubMed  Google Scholar 

  • Filatov M et al (2016) Female fertility preservation strategies: cryopreservation and ovarian tissue in vitro culture, current state of the art and future perspectives. Zygote 24:635–653

    Article  CAS  PubMed  Google Scholar 

  • Garor R et al (2009) Effects of basic fibroblast growth factor on in vitro development of human ovarian primordial follicles. Fertil Steril 91:1967–1975

    Article  CAS  PubMed  Google Scholar 

  • Ghezelayagh Z et al (2020) The combination of basic fibroblast growth factor and kit ligand promotes the proliferation, activity and steroidogenesis of granulosa cells during human ovarian cortical culture. Cryobiology 96:30–36

    Article  CAS  PubMed  Google Scholar 

  • Ghezelayagh Z et al (2021) The effect of agar substrate on growth and development of cryopreserved-thawed human ovarian cortical follicles in organ culture. Eur J Obstet Gynecol Reprod Biol 258:139–145

    Article  CAS  PubMed  Google Scholar 

  • Grannas K et al (2015) Crosstalk between Hippo and TGFβ: subcellular localization of YAP/TAZ/Smad complexes. J Mol Biol 427:3407–3415

    Article  CAS  PubMed  Google Scholar 

  • Green DM et al (2009) Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the Childhood Cancer Survivor Study. J Clin Oncol 27:2374–2381

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosbois J, Demeestere I (2018) Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod 33:1705–1714

    Article  CAS  PubMed  Google Scholar 

  • Harlow CR, Hillier SG (2002) Connective tissue growth factor in the ovarian paracrine system. Mol Cell Endocrinol 187:23–27

    Article  CAS  PubMed  Google Scholar 

  • Hornick JE et al (2012) Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Human 27:1801–1810

    CAS  Google Scholar 

  • Hovatta O et al (1997) Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod 12:1032–1036

    Article  CAS  PubMed  Google Scholar 

  • Hovatta O et al (1999) Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation. Human 14:2519–2524

    CAS  Google Scholar 

  • Hreinsson JG et al (2002) Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab 87:316–321

    Article  CAS  PubMed  Google Scholar 

  • Hsueh AJJCB (2014) Fertility: the role of mTOR signaling and KIT ligand. Curr Biol 24:R1040–R1042

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y et al (2016) Effects of gremlin-2 on the transition of primordial follicles during early folliculogenesis in the human ovary. Eur J Obstet Gynecol Reprod Biol 203:72–77

    Article  CAS  PubMed  Google Scholar 

  • Jeruss JS, Woodruff TK (2009) Preservation of fertility in patients with cancer. N Engl J Med 360:902–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y et al (2017) Human umbilical cord stem cell conditioned medium versus serum-free culture medium in the treatment of cryopreserved human ovarian tissues in in-vitro culture: a randomized controlled trial. Stem Cell Res Ther 8:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang B-J et al (2016) bFGF and VEGF improve the quality of vitrified-thawed human ovarian tissues after xenotransplantation to SCID mice. J Assist Reprod Genet 33:281–289

    Article  PubMed  Google Scholar 

  • Kang B et al (2017) Basic fibroblast growth factor improved angiogenesis of vitrified human ovarian tissues after in vitro culture and xenotransplantation. CryoLetters 38:194–201

    CAS  PubMed  Google Scholar 

  • Kawamura K et al (2013) Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci 110:17474–17479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura K et al (2016) Activation of dormant follicles: a new treatment for premature ovarian failure? Curr Opin Obstet Gynecol 28:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawamura K et al (2020) Drug-free in-vitro activation of follicles for infertility treatment in poor ovarian response patients with decreased ovarian reserve. Reprod Biomed Online 40:245–253

    Article  CAS  PubMed  Google Scholar 

  • Kedem A et al (2011a) Growth differentiating factor 9 (GDF9) and bone morphogenetic protein 15 both activate development of human primordial follicles in vitro, with seemingly more beneficial effects of GDF9. J Clin Endocrinol Metab 96:E1246-1254

    Article  CAS  PubMed  Google Scholar 

  • Kedem A et al (2011b) Alginate scaffold for organ culture of cryopreserved-thawed human ovarian cortical follicles. J Assist Reprod Genet 28:761–769

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SG et al (2013) Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 35:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight PG, Glister CJR (2006) TGF-β superfamily members and ovarian follicle development. Reproduction 132:191–206

    Article  CAS  PubMed  Google Scholar 

  • Kort JD et al (2014) Fertility issues in cancer survivorship. CA Cancer J Clin 64:118–134

    Article  PubMed  Google Scholar 

  • Laronda MM et al (2014) Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet 31:1013–1028

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HN et al (2019) Primordial follicle activation as new treatment for primary ovarian insufficiency. Clin Exp Reprod 46:43

    Article  Google Scholar 

  • Lerer-Serfaty G et al (2013) Attempted application of bioengineered/biosynthetic supporting matrices with phosphatidylinositol-trisphosphate-enhancing substances to organ culture of human primordial follicles. J Assist Reprod Genet 30:1279–1288

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2010) Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci 107:10280–10284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebenthron J et al (2013) The impact of culture conditions on early follicle recruitment and growth from human ovarian cortex biopsies in vitro. Fertil Steril 100:483-491.e485

    Article  CAS  PubMed  Google Scholar 

  • Louhio H et al (2000) The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod 6:694–698

    Article  CAS  PubMed  Google Scholar 

  • Lunding SA et al (2019) Biopsying, fragmentation and autotransplantation of fresh ovarian cortical tissue in infertile women with diminished ovarian reserve. Human 34:1924–1936

    CAS  Google Scholar 

  • McLaughlin EA, McIver SCJR (2009) Awakening the oocyte: controlling primordial follicle development. Reproduction 137:1

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin M et al (2011) mTOR kinase inhibition results in oocyte loss characterized by empty follicles in human ovarian cortical strips cultured in vitro. Fertil Steril 96:1154–1159

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin M et al (2014) Inhibition of phosphatase and tensin homologue (PTEN) in human ovary in vitro results in increased activation of primordial follicles but compromises development of growing follicles. Mol Hum Reprod 20:736–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin M et al (2018) Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. MHR Basic Sci Reprod Med 24:135–142

    Article  CAS  Google Scholar 

  • Meng Z et al (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novella-Maestre E et al (2015) Short-term PTEN inhibition improves in vitro activation of primordial follicles, preserves follicular viability, and restores AMH levels in cryopreserved ovarian tissue from cancer patients. PLoS ONE 10:e0127786

    Article  PubMed  PubMed Central  Google Scholar 

  • Parte S et al (2013) Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture. J Ovarian Res 6:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pors SE et al (2020) Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod 26:301–311

    Article  PubMed  Google Scholar 

  • Reddy P et al (2010) Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab 21:96–103

    Article  CAS  PubMed  Google Scholar 

  • Ren Y et al (2015) Lhx8 regulates primordial follicle activation and postnatal folliculogenesis. BMC Biol 13:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosendahl M et al (2010) Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril 94:2186–2190

    Article  PubMed  Google Scholar 

  • Sato Y et al (2020) Rapamycin treatment maintains developmental potential of oocytes in mice and follicle reserve in human cortical fragments grafted into immune-deficient mice. Mol Cell Endocrinol 504:110694

    Article  Google Scholar 

  • Schmidt K et al (2005) Anti-Müllerian hormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol 234:87–93

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K et al (2010) Risk of ovarian failure and fertility preserving methods in girls and adolescents with a malignant disease. BJOG 117:163–174

    Article  CAS  PubMed  Google Scholar 

  • Scott JE et al (2004a) Human ovarian tissue cultures: extracellular matrix composition, coating density and tissue dimensions. Reprod Biomed Online 9:287–293

    Article  CAS  PubMed  Google Scholar 

  • Scott JE et al (2004b) Benefits of 8-bromo-guanosine 3’,5’-cyclic monophosphate (8-br-cGMP) in human ovarian cortical tissue culture. Reprod Biomed Online 8:319–324

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Kim J (2018) Regulation of Hippo signaling by actin remodeling. BMB Rep 51:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silber SJ (2012) Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod 18:59–67

    Article  CAS  PubMed  Google Scholar 

  • Skinner MK (2005) Regulation of primordial follicle assembly and development. Hum Reprod Update 11:461–471

    Article  PubMed  Google Scholar 

  • Smitz J et al (2010) Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. J Hum Reprod Update 16:395–414

    Article  CAS  Google Scholar 

  • Sobinoff AP et al (2013) Intracellular signalling during female gametogenesis. MHR Basic Sci Reprod Med 19:265–278

    Article  CAS  Google Scholar 

  • Sun X et al (2015) New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators. Cell Cycle 14:721–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N et al (2015) Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Human 30:608–615

    Google Scholar 

  • Telfer EE (2019) Future developments: in vitro growth (IVG) of human ovarian follicles. Acta Obstet Gynecol Scand 98:653–658

    Article  PubMed  Google Scholar 

  • Telfer EE et al (2008) A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod 23:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Wang T-R et al (2014) Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro. Human 29:568–576

    CAS  Google Scholar 

  • Watt KI et al (2017) Regulation of tissue growth by the mammalian hippo signaling pathway. Front Physiol 8:942

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodruff TK (2010) The Oncofertility Consortium—addressing fertility in young people with cancer. Nat Rev Clin Oncol 7:466–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright CS et al (1999) Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod 14:1555–1562

    Article  CAS  PubMed  Google Scholar 

  • Zhai J et al (2016) In vitro activation of follicles and fresh tissue auto-transplantation in primary ovarian insufficiency patients. J Clin Endocrinol Metab 101:4405–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P et al (2004) In vitro effect of cyclic adenosine 3’, 5’-monophosphate (cAMP) on early human ovarian follicles. J Assist Reprod Genet 21:301–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2014) Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol 24:2501–2508

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y et al (2018) MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J Cell Physiol 233:226–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have no acknowledgments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ZG: Performed the literature search and manuscript writing; NK-R: Manuscript writing and image illustration; BE: Idea for the article and manuscript revision.

Corresponding author

Correspondence to Bita Ebrahimi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

This is a review study and Ethics Committee of Royan Institute confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezelayagh, Z., Khoshdel-Rad, N. & Ebrahimi, B. Human ovarian tissue in-vitro culture: primordial follicle activation as a new strategy for female fertility preservation. Cytotechnology 74, 1–15 (2022). https://doi.org/10.1007/s10616-021-00510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-021-00510-2

Keywords

Navigation