Skip to main content

Advertisement

Log in

Reciprocal immuno-biological alterations occur during the co-culture of natural killer cells and adipose tissue-derived mesenchymal stromal cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Due to their immune-therapeutic value, adipose tissue-derived mesenchymal stromal cells (AT-MSCs) require a better characterization of their interplay with natural killer (NK) cells known to contribute to the graft-versus-leukemia effects. When cultivated together, AT-MSCs showed cellular cytotoxicity and were therefore killed by NK cells in an activating-cytokine dependent manner. In the presence of AT-MSCs, both ligands and receptors known to drive NK cell interactions were significantly altered. During this co-culture, the proliferation of NK cells was slightly reduced, while their IFN-γ and TNF-α secretion was significantly increased. NK cells displayed sustained degranulation accompanied by increased discharge of their cytolytic granules (perforin, granzymes A and B). On the other hand, activated NK cells reduced the expression of serpins C1 and B9 in AT-MSCs. Collectively, reciprocal immuno-biological alterations occur during the co-culture of NK cells and AT-MSCs. Understanding these changes will increase the safety and efficacy of cell-based immuno-oncotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AT:

Adipose tissue

TNF:

Tumor necrosis factor

GVL:

Graft-versus-leukemia

GVH:

Graft-versus-host

IFN:

Interferon

MSCs:

Mesenchymal stromal cells

NK:

Natural killer

PBMCs:

Peripheral blood mononuclear cells

ROS:

Reactive oxygen species

References

  • Amorin B, Alegretti AP, Valim V, Pezzi A, Laureano AM, da Silva MAL, et al (2014) Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum Cell 27:137–150. http://www.ncbi.nlm.nih.gov/pubmed/24903975. Accessed 8 Jan 2018

  • Auletta JJ, Eid SK, Wuttisarnwattana P, Silva I, Metheny L, Keller MD et al (2015) Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation. Stem Cells 33:601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc KL, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet (London, England) 363:1439–1441

    Article  Google Scholar 

  • Blanco B, Herrero-Sánchez MC, Rodríguez-Serrano C, García-Martínez ML, Blanco JF, Muntión S et al (2016) Immunomodulatory effects of bone marrow versus adipose tissue derived mesenchymal stromal cells on NK cells: implications in the transplantation setting. Eur J Haematol 97:528–537

    Article  CAS  PubMed  Google Scholar 

  • Bose K (2015) Proteases in apoptosis: pathways, protocols and translational advances, 1st edn. Springer

  • Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648. http://www.ncbi.nlm.nih.gov/pubmed/23570660. Accessed 8 Jan 2018

  • Busser H, Bruyn C De, Urbain F, Najar M, Pieters K, Raicevic G et al (2014) Isolation of adipose-derived stromal cells without enzymatic treatment: expansion, phenotypical, and functional characterization. Stem Cells Dev 23:2390–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang S-Y, Yang C-H, Chou C-C, Chiang Y-P, Chuang T-H, Hsu L-C (2013) TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci USA 110:16079–16084

    Article  PubMed  Google Scholar 

  • Ciuffi S, Zonefrati R, Brandi ML (2017) Adipose stem cells for bone tissue repair. Clin Cases Miner Bone Metab 14:217. http://www.ncbi.nlm.nih.gov/pubmed/29263737. Accessed 8 Jan 2018

  • Crop MJ, Korevaar SS, de Kuiper R, Ijzermans JNM, van Besouw NM, Baan CC et al (2011) Human mesenchymal stem cells are susceptible to lysis by CD8(+) T cells and NK cells. Cell Transplant 20:1547–1559

    Article  PubMed  Google Scholar 

  • DelaRosa O, Sánchez-Correa B, Morgado S, Ramírez C, del Río B, Menta R et al (2012) Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killer-mediated lysis. Stem Cells Dev 21:1333–1343

    Article  CAS  PubMed  Google Scholar 

  • Fang B, Song Y, Zhao RC, Han Q, Lin Q (2007) Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis. Transplant Proc 39:1710–1713

    Article  CAS  PubMed  Google Scholar 

  • Freytes DO, Kang JW, Marcos-Campos I, Vunjak-Novakovic G (2013) Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem 114:220–229

    Article  CAS  PubMed  Google Scholar 

  • Giuliani M, Bennaceur-Griscelli A, Nanbakhsh A, Oudrhiri N, Chouaib S, Azzarone B et al (2014) TLR ligands stimulation protects MSC from NK killing. Stem Cells 32:290–300

    Article  CAS  PubMed  Google Scholar 

  • Hoogduijn MJ, Roemeling-van Rhijn M, Korevaar SS, Engela AU, Weimar W, Baan CC (2011) Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies. Hum Gene Ther 22:1587–1591

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95–109. http://www.ncbi.nlm.nih.gov/pubmed/11900986. Accessed 24 Jan 2018

  • Jewett A, Arasteh A, Tseng HC, Behel A, Arasteh H, Yang W et al (2010) Strategies to rescue Mesenchymal Stem Cells (MSCs) and Dental Pulp Stem Cells (DPSCs) from NK cell mediated cytotoxicity. PLoS ONE 5:1–14

    Article  CAS  Google Scholar 

  • Kaiserman D, Bird PI (2010) Control of granzymes by serpins. Cell Death Differ 17:586–595

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Waller EK (2009) Dichotomous role of interferon-γ in allogeneic bone marrow transplant. Biol Blood Marrow Transplant 15:1347–1353. http://www.ncbi.nlm.nih.gov/pubmed/19822293. Accessed 24 Jan 2018

  • Lupatov AY, Kim YS, Bystrykh OA, Vakhrushev IV, Pavlovich SV, Yarygin KN, Sukhikh GT (2017) Effect of fibroblast-like cells of mesenchymal origin of cytotoxic activity of lymphocytes against NK-sensitive target cells. Bull Exp Biol Med 162:552–557

    Article  CAS  PubMed  Google Scholar 

  • Menard C, Pacelli L, Bassi G, Dulong J, Bifari F, Bezier I et al (2013) Clinical-grade mesenchymal stromal cells produced under various good manufacturing practice processes differ in their immunomodulatory properties: standardization of immune quality controls. Stem Cells Dev 22:1789–1801. http://www.ncbi.nlm.nih.gov/pubmed/23339531. Accessed 24 Jan 2018

  • Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N et al (2009) Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11:570–583

    Article  CAS  PubMed  Google Scholar 

  • Najar M, Raicevic G, Fayyad-Kazan H, Bruyn C De, Bron D, Toungouz M, Lagneaux L (2013) Impact of different mesenchymal stromal cell types on T-cell activation, proliferation and migration. Int Immunopharmacol 15:693–702

    Article  CAS  PubMed  Google Scholar 

  • Najar M, Krayem M, Meuleman N, Bron D, Hélène B, Lagneaux L (2017) Immunohematology mesenchymal stromal cell-based therapy. Appl Immunohistochem Mol Morphol 1. http://www.ncbi.nlm.nih.gov/pubmed/29271793. Accessed 8 Jan 2018

  • Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L (2018a) Mesenchymal stromal cells of the bone marrow and natural killer cells: cell interactions and cross modulation. J Cell Commun Signal 12:673–688

    Article  PubMed  PubMed Central  Google Scholar 

  • Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L (2018b) Immunomodulatory effects of foreskin mesenchymal stromal cells on natural killer cells. J Cell Physiol 233:5243–5254

    Article  CAS  PubMed  Google Scholar 

  • Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L (2018c) Immunological impact of Wharton’s Jelly mesenchymal stromal cells and natural killer cell co-culture. Mol Cell Biochem. http://www.ncbi.nlm.nih.gov/pubmed/29380244. Accessed 19 Feb 2018

  • Noone C, Kihm A, English K, O’Dea S, Mahon BP (2013) IFN-γ stimulated human umbilical-tissue-derived cells potently suppress NK activation and resist NK-mediated cytotoxicity in vitro. Stem Cells Dev 22:3003–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poggi A, Zocchi MR (2014) NK cell autoreactivity and autoimmune diseases. Front Immunol 5:27

    PubMed  PubMed Central  Google Scholar 

  • Qi K, Li N, Zhang Z, Melino G (2017) Tissue regeneration: the crosstalk between mesenchymal stem cells and immune response. Cell Immunol. http://linkinghub.elsevier.com/retrieve/pii/S0008874917302198. Accessed 8 Jan 2018

  • Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P et al (2013) Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther 4:125–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85

    Article  PubMed  Google Scholar 

  • Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell–natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Jäger M, Mauel K, Brandau S, Lask S, Flohé SB (2014) Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediators Inflamm 2014:1–11. http://www.ncbi.nlm.nih.gov/pubmed/24876666. Accessed 15 Jan 2018

  • Tseng H-C, Arasteh A, Paranjpe A, Teruel A, Yang W, Behel A et al (2010) Increased lysis of stem cells but not their differentiated cells by natural killer cells; de-differentiation or reprogramming activates NK cells. PLoS ONE 5:e11590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valencic E, Loganes C, Cesana S, Piscianz E, Gaipa G, Biagi E, Tommasini A (2014) Inhibition of mesenchymal stromal cells by pre-activated lymphocytes and their culture media. Stem Cell Res Ther 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Verneris MR (2013) Natural killer cells and regulatory T cells: how to manipulate a graft for optimal GVL. Hematol Am Soc Hematol Educ Progr 2013:335–341. http://www.ncbi.nlm.nih.gov/pubmed/24319201. Accessed 3 Aug 2017

  • Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD (2012) Natural killer cell-produced IFN-γ and TNF-α induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol 91:299–309. http://www.ncbi.nlm.nih.gov/pubmed/22045868. Accessed 24 January 2018

  • Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor and cancer. J Pathol 230:241–248. http://www.ncbi.nlm.nih.gov/pubmed/23460481. Accessed 24 Jan 2018

  • Watzl C, Urlaub D, Fasbender F, Claus M (2014) Natural killer cell regulation—beyond the receptors. F1000Prime Rep 6: 87. http://www.ncbi.nlm.nih.gov/pubmed/25374665. Accessed 8 Jan 2018

  • Yang Y-G, Wang H, Asavaroengchai W, Dey BR (2005) Role of interferon-gamma in GVHD and GVL. Cell Mol Immunol 2:323–329. http://www.ncbi.nlm.nih.gov/pubmed/16368058. Accessed 24 Jan 2018

Download references

Acknowledgements

We thank Karlien Pieters for her technical assistance.

Funding

This project was supported by “Le Fonds National de la Recherche Scientifique, F.R.S.-FNRS” and the “Télévie”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Fayyad-Kazan.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the ethics committee of the “Institut Jules Bordet” (Belgium) and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najar, M., Fayyad-Kazan, M., Merimi, M. et al. Reciprocal immuno-biological alterations occur during the co-culture of natural killer cells and adipose tissue-derived mesenchymal stromal cells. Cytotechnology 71, 375–388 (2019). https://doi.org/10.1007/s10616-019-00294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00294-6

Keywords

Navigation