Skip to main content
Log in

Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: a new in vitro source of rosmarinic acid

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

An in vitro approach to the production of rosmarinic acid (RA), a medicinally important caffeic acid ester, in a cell suspension culture (CSC) of Satureja khuzistanica Jamzad (Lamiaceae) has been investigated for the first time. The CSC was established from friable calli derived from shoot tip explants in Gamborg’s B5 liquid medium supplemented with 30 g/L sucrose, 20 mg/L l-glutamine, 200 mg/L casein hydrolysate, 5 mg/L benzyladenine (BA) and 1 mg/L indole-3-butyric acid (IBA). The effect of nitrogen source (KNO3 and (NH4)2SO4) and their different concentrations on the fresh and dry weight (g/L), as well as RA content (mg/g dry weight) were measured. CSC growth measurements indicated a maximum specific cell growth rate of 1.5/day, a doubling time of 7.6 days and a high percentage of cell viability (96.4 %) throughout the growth cycle. Maximum cell fresh weight (353.5 g/L), dry weight (19.7 g/L) and RA production (180.0 mg/g) were attained at day 21 of culture. Cell growth and RA content were affected by nitrogen deficiency. Media containing 8.3 mM of total nitrogen (¼ of B5 standard medium) led to a minimum cell fresh weight (243.0 g/L), dry weight (17.4 g/L) and RA content (38.0 mg/g) after 21 days. The established CSC provided useful material for further optimization experiments aimed at a large-scale production of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RA:

Rosmarinic acid

CSC:

Cell suspension culture

BA:

Benzyladenine

IBA:

Indole-3-butyric acid

FW:

Fresh weight

DW:

Dry weight

SGR:

Specific growth rate

PGRs:

Plant growth regulators

HPLC:

High performance liquid chromatography

PVP:

Polyvinylpyrrolidone

CRD:

Completely randomized design

MS:

Mean square

DF:

Degrees of freedom

CV:

Coefficient of variation

References

  • Abbasi Kajani A, Moghim S, Mofid MR (2012) Optimization of the basal medium for improving production and secretion of taxanes from suspension cell culture of Taxus baccata L. DARU J Pharm Sci 20:54–59

    Article  Google Scholar 

  • Afzal S, Zia M, Chaudhary MF (2006) Uptake of nitrate and ammonium ion by cell suspension cultures of Vigna radiata. Pak J Bot 38:85–88

    Google Scholar 

  • Bauer N, Leljak-Levanic D, Jelaska S (2004) Rosmarinic acid synthesis in transformed callus culture of Coleus blumei benth. Z Naturforsch C 59:554–560

    Article  CAS  Google Scholar 

  • Bonfill M, Mangas S, Moyano E, Cusido RM, Palazón J (2011) Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tiss Organ Cult 104:61–67

    Article  CAS  Google Scholar 

  • Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32:203–217

    Article  CAS  Google Scholar 

  • Cesarino I, Araujo P, Paes Leme AF, Creste S, Mazzafera P (2013) Suspension cell culture as a tool for the characterization of class III peroxidases in sugarcane. Plant Physiol Biochem 62:1–10

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess consideration for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149

    Article  CAS  Google Scholar 

  • Corchete P, Sanchez JM, Cacho M, Moran M, Fernández-Tárrago J (1990) Cardenolide content in suspension cell cultures derived from leaf and root callus of Digitalis thapsi L. Plant Physiol 137:196–200

    Article  CAS  Google Scholar 

  • Decendit A, Merillon J (1996) Condensed tannin and anthocyanin production in Vitis vinifera cell suspension cultures. Plant Cell Rep 15:762–765

    Article  CAS  Google Scholar 

  • De-Eknamkul W, Ellis BE (1985) Effects of macronutrients on growth and rosmarinic acid formation in the cell suspension cultures of Anchusa officinalis. Plant Cell Rep 4:46–49

    Article  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  Google Scholar 

  • Do ChB, Cormier F (1991) Effect of high ammonium concentrations on growth and anthocyanin formation of grape (Vitis vinifera L.) cell suspension cultured in a production medium. Plant Cell Tiss Organ Cult 27:169–174

    Article  Google Scholar 

  • Dordas C, Brown PH (2005) Boron deficiency affects cell viability, phenolic leakage and oxidative burst in rose cell cultures. Plant Soil 268:293–301

    Article  CAS  Google Scholar 

  • Dougall DK (1977) Current problems in the regulation of nitrogen metabolism in plant cell cultures. In: Barz W, Reinhard E, Zank MH (eds) Plant tissue culture and is biotechnological applications. Springer, Berlin, pp 76–84

    Chapter  Google Scholar 

  • Ellis BE, Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem J 118:291–297

    Article  CAS  Google Scholar 

  • Farsam H, Amanlou M, Radpour MR, Salehinia AN, Shafiee A (2004) Composition of the essential oils of wild and cultivated Satureja khuzistanica Jamzad from Iran. Flavour Fragr J 19(4):308–310

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Georgiev M, Weber J (2014) Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization. Biotechnol Lett 36:1359–1367

    Article  CAS  Google Scholar 

  • Georgiev M, Pavlov A, Ilieva M (2004) Rosmarinic acid production by Lavandula vera MM cell suspension: the effect of temperature. Biotechnol Lett 26:855–856

    Article  CAS  Google Scholar 

  • Georgiev M, Abrashev R, Krumova E, Demirevska K, Ilieva M, Angelova M (2009) Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study. Appl Biochem Biotechnol 159:415–425

    Article  CAS  Google Scholar 

  • Hadian J, Mirjalili MH, Kanani MR, Salehnia A, Ganjipoor P (2011) Phytochemical and morphological characterization of Satureja khuzistanica Jamzad populations from Iran. Chem Biodivers 8:902–915

    Article  CAS  Google Scholar 

  • Hakkim FL, Kalyani S, Essa M, Girija S, Song H (2011a) Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. Int J Biol Med Res 2:1070–1074

    Google Scholar 

  • Hakkim FL, Kalyani S, Essa M, Girija S, Song H (2011b) Production of rosmarinic acid in Ocimum sanctum (L.) cell suspension cultures by the influence of growth regulators. Int J Biol Med Res 2:1158–1161

    Google Scholar 

  • Hippolyte I, Marin B, Baccou JC, Jonard R (1992) Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112

    Article  CAS  Google Scholar 

  • Hirasuna TJ, Shuler ML, Lackney VK, Spaiswick RM (1991) Enhanced anthocyanin production in grape cell cultures. Plant Sci 78:107–120

    Article  CAS  Google Scholar 

  • Hosainzadegan H, Delfan B (2009) Evaluation of antibiofilm activity of dentol. Acta Med Iranica 47(1):35–40

    CAS  Google Scholar 

  • Ilieva M, Pavlov A (1999) Rosmarinic acid production by Lavandula vera MM cell suspension culture: nitrogen effect. World J Microbiol Biotechnol 15:711–714

    Article  CAS  Google Scholar 

  • Irvani N, Solouki M, Omidi M, Zare AR, Shahnazi S (2010) Callus induction and plant regeneration in Dorema ammoniacum D., an endangered medicinal plant. Plant Cell Tiss Organ Cult 100:293–299

    Article  Google Scholar 

  • Jalili A, Jamzad Z (1999) Red data book of Iran: a preliminary survey of endemic, rare & endangered plant species in Iran. Research Institute of Forest and Rangelands Publication, Tehran

    Google Scholar 

  • Khojasteh A, Mirjalili MH, Hidalgo D, Corchete P, Palazon J (2014) New trends in biotechnological production of rosmarinic acid. Biotechnol Lett 36:2393–2406

    Article  CAS  Google Scholar 

  • Kim HK, Oh SR, Lee HK, Huh H (2001) Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa. Biotechnol Lett 23:55–60

    Article  Google Scholar 

  • Kintzios S, Nikolaou A, Skoula M (1999) Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S. fruticosa leaf callus cultures. Plant Cell Rep 18:462–466

    Article  CAS  Google Scholar 

  • Kintzios S, Makri O, Panagiotopoulos EM, Scapeti M (2003) In vitro rosmarinic acid accumulation in sweet basil (Ocimum basilicum L.). Biotechnol Lett 25:405–408

    Article  CAS  Google Scholar 

  • Mathur S, Shekhawat GS (2013) Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiol Plant 35:931–939

    Article  CAS  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560

    Article  CAS  Google Scholar 

  • Moghaddam FM, Farimani MM, Salahvarzi S, Amin G (2007) Chemical constituents of dichloromethane extract of cultivated Satureja khuzistanica. Evid Based Complement Altern Med 4:95–98

    Article  Google Scholar 

  • Nawa Y, Asano S, Motoori S, Ohtani T (1993) Production of anthocyanins, carotenoids and proanthocyanidins by cultured cells of Rabbiteye Blueberry (Vaccinium ashei Reade.). Biosci Biotechnol Biochem 57:770–774

    Article  CAS  Google Scholar 

  • Nejad Ebrahimi S, Hadian J, Mirjalili MH, Sonboli A, Yousefzadi M (2008) Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chem 110:927–931

    Article  CAS  Google Scholar 

  • Oksman-Caldentey KM, Barz WH (eds) (2002) Plant biotechnology and transgenic plants, vol 92. CRC Press, Boca Raton, FL, p 694

    Google Scholar 

  • Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genome era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  CAS  Google Scholar 

  • Park SU, Uddin MR, Xu H, Kim YK, Lee SY (2008) Biotechnological applications for rosmarinic acid production in plants. Afr J Biotechnol 7:4959–4965

    CAS  Google Scholar 

  • Pasqua G, Monacelli B, Mulinacci N, Rinaldi S, Giaccherini C, Innocenti M, Vinceri FF (2005) The effect of growth regulators and sucrose on anthocyanin production in Camptotheca acuminata cell cultures. Plant Physiol Biochem 43:293–298

    Article  CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  Google Scholar 

  • Qui JA, Castro-Concha LA, García-Sosa K, Penã-Rodríguez LM, Miranda-Ham ML (2009) Differential effects of phytotoxic metabolites from Alternaria tagetica on Tagetes erecta cell cultures. J Gen Plant Pathol 75:331–339

    Article  CAS  Google Scholar 

  • Rodríguez-Monroy M, Galindo E (1999) Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in stirred tank. Enzym Microb Technol 24:687–693

    Article  Google Scholar 

  • Sahraroo A, Babalar M, Mirjalili MH, Fattahi Moghadam MR, Nejad Ebrahimi S (2014) In vitro callus induction and rosmarinic acid quantification in callus culture of Satureja khuzistanica Jamzad (Lamiaceae). Iran J Pharm Res 13(4):1445–1454

    Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    Article  CAS  Google Scholar 

  • Sato K, Nakayama M, Shigeta J (1996) Culturing conditions affecting the production of anthocyanin in suspended cell cultures of strawberry. Plant Sci 113:91–98

    Article  CAS  Google Scholar 

  • Shekarchi M, Hajimehdipoor H, Saeidnia S, Gohari AR, Hamedani MP (2012) Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn Mag 8:37–41

    Article  CAS  Google Scholar 

  • Shetty K (2001) Biosynthesis and medical applications of rosmarinic acid. J Herbs Spices Med Plants 8:161–182

    Article  Google Scholar 

  • Shetty K (2007) Rosmarinic acid biosynthesis and mechanism of action. In: Shetty K, Paliyath G, Pometto AL, Levin RE (eds) Functional foods and biotechnology. CRC, Boca Raton, FL, pp 187–207

    Google Scholar 

  • Simões C, Cordeiro L, Castro TC, Callado H, Albarello N, Mansur E (2011) Establishment of anthocyanin-producing cell suspension cultures of Cleome rosea Vahl ex DC. (Capparaceae). Plant Cell Tiss Organ Cult 106:537–545

    Article  Google Scholar 

  • Srinivasan V, Ryn DD (1993) Improvement of shikonin productivity in Lithospermum erythrorhizon cell culture by alternating carbon and nitrogen feeding strategy. Biotechnol Bioeng 42:793–799

    Article  CAS  Google Scholar 

  • Sujanya S, Poornasri Devi B, Sai I (2008) In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. J Biosci 33(1):113–120

    Article  CAS  Google Scholar 

  • Tepe B, Sokmen A (2007) Production and optimization of rosmarinic acid by Satureja hortensis L. callus cultures. Nat Prod Res 21:1133–1144

    Article  CAS  Google Scholar 

  • Ulbrich B, Wiesner W, Ames H (1985) Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 293–303

    Chapter  Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv Biochem Eng Biotechnol 72:1–26

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Shahid Beheshti University Research Council, the University of Tehran, Iran and the University of Salamanca, Spain for their financial support of this project. We also wish to thank Dr. Javad Hadian (Medicinal Plants research Institute, Shahid Beheshti University) for his kind help in plant material collection. This work is part of Amir Sahraroo PhD’s thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Mirjalili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahraroo, A., Mirjalili, M.H., Corchete, P. et al. Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: a new in vitro source of rosmarinic acid. Cytotechnology 68, 1415–1424 (2016). https://doi.org/10.1007/s10616-015-9901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9901-x

Keywords

Navigation