Skip to main content

Advertisement

Log in

Performance studies of the fixed stress split algorithm for immiscible two-phase flow coupled with linear poromechanics

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this work, we measure the performance of the fixed stress split algorithm for the immiscible water-oil flow coupled with linear poromechanics. The two-phase flow equations are solved on general hexahedral elements using the multipoint flux mixed finite element method whereas the poromechanics equations are discretized using the conforming Galerkin method. We introduce a rigorous calculation of the update in poroelastic properties during the iterative solution of the coupled system equations. The effects of the coupling parameter on the performance of the fixed stress algorithm is demonstrated in two field studies: the Frio oil reservoir and the Cranfield injection site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wick, T., Wollner, W.: Optimization with nonstationary, nonlinear monolithic fluid-structure interaction. International Journal for Numerical Methods in Engineering (2020)

  2. Mayr, M., Noll, M.H., Gee, M.W.: A hybrid interface preconditioner for monolithic fluid–structure interaction solvers. Adv. Model. Simul. Eng. Sci. 7(1), 1–33 (2020)

    Article  Google Scholar 

  3. Failer, L., Richter, T.: A parallel newton multigrid framework for monolithic fluid-structure interactions. J. Sci. Comput. 82(2), 1–27 (2020)

    Article  Google Scholar 

  4. Felippa, C.A., Park, K.-C., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190(24-25), 3247–3270 (2001)

    Article  Google Scholar 

  5. Camargo, J.T., White, J.A., Borja, R.I.: A macroelement stabilization for mixed finite element/finite volume discretizations of multiphase poromechanics. Computational Geosciences (2020)

  6. Cremon, M.A., Castelletto, N., White, J.A.: Multi-stage preconditioners for thermal–compositional–reactive flow in porous media. J. Comput. Phys. 418, 109607 (2020)

    Article  Google Scholar 

  7. White, J.A., Borja, R.I.: Block-preconditioned newton–krylov solvers for fully coupled flow and geomechanics. Comput. Geosci. 15(4), 647 (2011)

    Article  Google Scholar 

  8. White, J.A., Castelletto, N., Klevtsov, S., Bui, Q.M., Osei-Kuffuor, D., Tchelepi, H.A.: A two-stage preconditioner for multiphase poromechanics in reservoir simulation. Comput. Methods Appl. Mech. Eng. 357, 112575 (2019)

    Article  Google Scholar 

  9. Frigo, M., Castelletto, N., Ferronato, M., White, J.A.: Efficient solvers for hybridized three-field mixed finite element coupled poromechanics. Computers & Mathematics with Applications (2020)

  10. Castelletto, N., White, J.A., Tchelepi, H.A.: Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39(14), 1593–1618 (2015)

    Article  Google Scholar 

  11. Franceschini, A., Castelletto, N., Ferronato, M.: Block preconditioning for fault/fracture mechanics saddle-point problems. Comput Methods Appl Mech Eng 344, 376–401 (2019)

  12. Ferronato, M., Franceschini, A., Janna, C., Castelletto, N., Tchelepi, H.A.: A general preconditioning framework for coupled multiphysics problems with application to contact- and poro-mechanics. J. Comput. Phys. 398, 108887 (2019)

    Article  Google Scholar 

  13. Gaspar, F.J., Rodrigo, C.: On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics. Comput. Methods Appl. Mech. Eng. 326, 526–540 (2017)

    Article  Google Scholar 

  14. Bui, Q.M., Osei-Kuffuor, D., Castelletto, N., White, J.A.: A scalable multigrid reduction framework for multiphase poromechanics of heterogeneous media. SIAM J. Sci. Comput. 42, B379–B396 (2020)

    Article  Google Scholar 

  15. Garipov, T.T., Tomin, P., Rin, R., Voskov, D.V., Tchelepi, H.A.: Unified thermo-compositional-mechanical framework for reservoir simulation. Comput. Geosci. 22(4), 1039–1057 (2018)

    Article  Google Scholar 

  16. Storvik, E., Both, J.W., Nordbotten, J.M., Radu, F.A.: The fixed-stress splitting scheme for Biot’s equations as a modified richardson iteration: Implications for optimal convergence (2019)

  17. Correa, M.R., Murad, M.A.: A new sequential method for three-phase immiscible flow in poroelastic media. J. Comput. Phys. 373, 493–532 (2018)

    Article  Google Scholar 

  18. Jha, B., Juanes, R.: Coupled modeling of multiphase flow and fault poromechanics during geologic co2 storage. Energy Procedia 63:3313–3329. 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12 (2014)

  19. Jha, B., Juanes, T.: Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering. Water Resour. Res. 50(5), 3776–3808 (2014)

    Article  Google Scholar 

  20. Choo, J., Lee, S.: Enriched galerkin finite elements for coupled poromechanics with local mass conservation. Comput. Methods Appl. Mech. Eng 341, 311–332 (2018)

  21. Choo, J., White, J.A., Borja, R.I.: Hydromechanical modeling of unsaturated flow in double porosity media. Int. J. Geomech. 16(6), D4016002 (2016)

  22. Choo, J.: Large deformation poromechanics with local mass conservation: An enriched galerkin finite element framework. Int. J. Numer. Methods Eng. 116(1), 66–90 (2018)

    Article  Google Scholar 

  23. Xueying, L., Wheeler, M.F.: Three-way coupling of multiphase flow and poromechanics in porous media. J. Comput. Phys. 401, 109053 (2020)

    Article  Google Scholar 

  24. Zhao, Y., Choo, J.: Stabilized material point methods for coupled large deformation and fluid flow in porous materials. Comput. Methods Appl. Mech. Eng. 362, 112742 (2020)

    Article  Google Scholar 

  25. Kadeethum, T., Lee, S., Ballarind, F., Choo, J., Nick, H.M.: A locally conservative mixed finite element framework for coupled hydro-mechanical-chemical processes in heterogeneous porous media (2020)

  26. Dewers, T., Eichhubl, P., Ganis, B., Gomez, S., Heath, J., Jammoul, M., Kobos, P., Liu, R., Major, J., Matteo, E., Newell, P., Rinehart, A., Sobolik, S., Stormont, J., Taha, M.R., Wheeler, M., White, D.: Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage. Int. J. Greenh. Gas Control 68, 203–215 (2018)

  27. Kim, J., Tchelepi, H.A., Juanes, R.: Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics. SPE J. 16(2), 249–262 (2011)

    Article  Google Scholar 

  28. Mikelić, A., Wang, B., Wheeler, M.F.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18, 325–341 (2014)

    Article  Google Scholar 

  29. Kim, J., Tchelepi, H.A., Juanes, R.: Rigorous coupling of geomechanics and multiphase flow with strong capillarity. Soc. Pet. Eng. J. 18(6), 1123–1139 (2013)

    Google Scholar 

  30. Kim, J.: Sequential formulation of coupled geomechanics and multiphase flow. Ph.D. Dissertation, Stanford University (2010)

  31. Reverón, M.A.B., Kumar, K., Nordbotten, J.M., Radu, F.A.: Iterative solvers for Biot model under small and large deformations. Comput. Geosci., 1–13 (2020)

  32. Almani, T., Kumar, K., Wheeler, M.F.: Convergence and error analysis of fully discrete iterative coupling schemes for coupling flow with geomechanics. Computational Geosciences (2017)

  33. Both, J.W., Borregales, M., Nordbotten, J.M., Kumar, K., Radu, F.A.: Robust fixed stress splitting for Biot’s equations in heterogeneous media. Appl. Math. Lett. 68, 101–108 (2017)

    Article  Google Scholar 

  34. Ahmed, E., Nordbotten, J.M., Radu, F.A.: Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems. J. Comput. Appl. Math. 364, 112312 (2020)

    Article  Google Scholar 

  35. Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math. Appl. 77(6), 1479–1502. 7th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2017) (2019)

  36. Borregales, M., Kumar, K., Radu, F.A., Rodrigo, C., Gaspar, F.J.: A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model. Comput. Math. Appl. 77(6), 1466–1478. 7th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2017) (2019)

  37. Girault, V., Xueying, L., Wheeler, M.F.: A posteriori error estimates for Biot system using enriched galerkin for flow. Comput. Methods Appl. Mech. Eng. 369, 113185 (2020)

    Article  Google Scholar 

  38. Jammoul, M., Ganis, B., Wheeler, M.F.: Effect of reservoir properties on interwell stress interference. In: 52nd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2018)

  39. Jammoul, M., Ganis, B., Wheeler, M.: General semi-structured discretization for flow and geomechanics on diffusive fracture networks. In: SPE Reservoir Simulation Conference. Society of Petroleum Engineers (2019)

  40. Dana, S., Wheeler, M.F.: Design of convergence criterion for fixed stress split iterative scheme for small strain anisotropic poroelastoplasticity coupled with single phase flow. arXiv:1912.06476 (2019)

  41. Dana, S.: System of equations and staggered solution algorithm for immiscible two-phase flow coupled with linear poromechanics. arXiv:1912.04703 (2019)

  42. Dana, S., Ita, J., Wheeler, M.F.: The correspondence between Voigt and Reuss bounds and the decoupling constraint in a two-grid staggered algorithm for consolidation in heterogeneous porous media. Multiscale Model Simul. 18(1), 221–239 (2020)

    Article  Google Scholar 

  43. Dana, A., Zhao, X., Jha, B.: Two-grid method on unstructured tetrahedra: Applying computational geometry to staggered solution of coupled flow and mechanics problems. arXiv:2102.04455 (2021)

  44. Dana, S., Wheeler, M.F.: Convergence analysis of fixed stress split iterative scheme for anisotropic poroelasticity with tensor Biot parameter. Comput. Geosci. 22(5), 1219–1230 (2018)

    Article  Google Scholar 

  45. Dana, S., Wheeler, M.F.: Convergence analysis of two-grid fixed stress split iterative scheme for coupled flow and deformation in heterogeneous poroelastic media. Comput. Methods Appl. Mech. Eng. 341, 788–806 (2018)

    Article  Google Scholar 

  46. Dana, S.: Addressing challenges in modeling of coupled flow and poromechanics in deep subsurface reservoirs. Phd thesis, The University of Texas at Austin (2018)

  47. Almani, T., Kumar, K., Dogru, A., Singh, G., Wheeler, M.F.: Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics. Comput. Methods Appl. Mech. Eng. 311, 180–207 (2016)

    Article  Google Scholar 

  48. Dana, S., Ganis, B., Wheeler, M.F.: A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs. J. Comput. Phys. 352, 1–22 (2018)

    Article  Google Scholar 

  49. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–461 (2013)

    Article  Google Scholar 

  50. da Silva Junior, D.A.: Multiphase flow and fault poromechanics: understanding earthquake triggering and seismic hazard. PhD thesis Massachusetts Institute of Technology (2020)

  51. Coussy, O., Dangla, P., Lassabatére, T., Baroghel-Bouny, V.: The equivalent pore pressure and the swelling and shrinkage of cement-based materials. Mater. Struct. 37, 15–20 (2004)

    Article  Google Scholar 

  52. Geertsma, J.: The effect of fluid pressure decline on volumetric changes of porous rocks. SPE 210, 331–340 (1957)

    Google Scholar 

  53. Brown, R.J.S., Korringa, J.: On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4), 608–616 (1975)

    Article  Google Scholar 

  54. Coussy, O.: Poromechanics, 2nd edn. Wiley (2004)

  55. Cao, H.: Development of techniques for general purpose simulators. Stanford University (2002)

  56. Saad, Y., Schultz, M.H.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  Google Scholar 

  57. Behie, G.A.: Practical considerations for incomplete factorization methods in reservoir simulation. In: SPE Reservoir Simulation Symposium. OnePetro (1983)

  58. Stüben, K: Algebraic multigrid (amg): experiences and comparisons. Appl Math Comput 13 (3-4), 419–451 (1983)

    Google Scholar 

  59. Wallis, J.R., Kendall, R.P., Little, T.E.: Constrained residual acceleration of conjugate residual methods. In SPE Reservoir Simulation Symposium. OnePetro (1985)

  60. Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers, vol. 51, pp. 267–294. Springer (2006)

  61. Juntunen, M., Wheeler, M.F.: Two-phase flow in complicated geometries. Comput. Geosci. 17(2), 239–247, 04 (2013)

  62. Delshad, M., Kong, X., Tavakoli, R., Hosseini, S.A., Wheeler, M.F.: Modeling and simulation of carbon sequestration at cranfield incorporating new physical models. Int. J. Greenh. Gas Control 18, 463–473 (2013)

    Article  Google Scholar 

  63. Brezzi, F., Douglas, J., Durán, R, Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51(2), 237–250 (1987)

    Article  Google Scholar 

  64. Ingram, R., Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48(4), 1281–1312 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumik Dana.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Derivation of mass conservation equation for two phase flow model in deformable porous media

When the two phase flow and solid matrix deformation are coupled, the mass conservation equations for flow and solid phase read:

$$ \begin{array}{@{}rcl@{}} &&\frac{\partial (\phi \rho_{\beta}S_{\beta})}{\partial t}+\nabla \cdot (\rho_{\beta}S_{\beta}\phi \mathbf{v}_{f\beta})= q_{\beta}\\&& (mass conservation for fluid phase \beta)\\ &&\frac{\partial ((1-\phi)\rho_{s})}{\partial t}+\nabla \cdot ((1-\phi)\rho_{s} \mathbf{v}_{s})=0\\&& (mass conservation for solid phase) \end{array} $$

where vfβ is the interstitial velocity of fluid phase β in Eulerian coordinate, ρs is the solid phase mass density, and vs is the solid phase velocity in Eulerian coordinate. The phase Darcy velocity vβ, defined as phase superficial velocity relative to the moving solid skeleton, is connected to vfβ and vs as:

$$ \begin{array}{@{}rcl@{}} \mathbf{v}_{\beta} = \phi S_{\beta}(\mathbf{v}_{f\beta}-\mathbf{v}_{s}) \end{array} $$

which can be substituted in the mass conservation of the fluid phase β to obtain

$$ \begin{array}{@{}rcl@{}} \frac{\partial (\phi \rho_{\beta}S_{\beta})}{\partial t}&+&\nabla \cdot (\rho_{\beta}\mathbf{v}_{\beta})+ \rho_{\beta}S_{\beta}\phi \nabla \cdot \mathbf{v}_{s}\\ &+&\mathbf{v}_{s}\cdot \nabla (\rho_{\beta}S_{\beta}\phi)=q_{\beta} \end{array} $$
(A.1)

Similarly, the mass conservation for solid phase can be written as

$$ \begin{array}{@{}rcl@{}} \frac{\partial ((1-\phi)\rho_{s})}{\partial t}&&+(1-\phi)\rho_{s}\nabla \cdot \mathbf{v}_{s} \\ &&+ \mathbf{v}_{s} \cdot \nabla ((1-\phi)\rho_{s}) = 0 \end{array} $$
(A.2)

Using the material time derivative relation:

$$ \begin{array}{@{}rcl@{}} \frac{d(\cdot)}{dt} = \frac{\partial (\cdot)}{dt} + \mathbf{v}_{s} \cdot \nabla (\cdot) \end{array} $$
(A.3)

we obtain (A.1) and (A.2) as

$$ \begin{array}{@{}rcl@{}} \frac{d (\phi \rho_{\beta}S_{\beta})}{d t}+\nabla \cdot (\rho_{\beta}\mathbf{v}_{\beta})+ \rho_{\beta}S_{\beta}\phi \nabla \cdot \mathbf{v}_{s}=q_{\beta} \end{array} $$
(A.4)
$$ \begin{array}{@{}rcl@{}} \frac{d ((1-\phi)\rho_{s})}{d t}+(1-\phi)\rho_{s}\nabla \cdot \mathbf{v}_{s} = 0 \end{array} $$
(A.5)

Substituting the expression for ∇⋅vs from Eqs. A.5 into A.4, we get

$$ \begin{array}{@{}rcl@{}} \frac{d (\phi \rho_{\beta}S_{\beta})}{dt}+\nabla \cdot (\rho_{\beta}\mathbf{v}_{\beta})- \rho_{\beta}S_{\beta}\phi \left( \frac{\frac{d ((1-\phi)\rho_{s})}{d t}} {(1-\phi)\rho_{s}}\right)=q_{\beta} \end{array} $$
(A.6)

In Eq. A.6, \(1-\phi = \frac {V_{s}}{V_{b}}\) where Vs = VbVp is the solid grain volume and Vp is the pore volume and Vb is the bulk volume. Use this relation in Eq. A.6 we have:

$$ \begin{array}{@{}rcl@{}} \frac{d (\phi \rho_{\beta}S_{\beta})}{dt}+\nabla \cdot (\rho_{\beta}\mathbf{v}_{\beta})- \rho_{\beta}S_{\beta}\phi \left( \frac{\frac{d (\frac{V_{s}}{V_{b}}\rho_{s})}{d t}} {\frac{V_{s}}{V_{b}}\rho_{s}}\right)=q_{\beta} \end{array} $$

Note that solid grain mass is conserved in a deformable porous media, i.e. ρsVs = constant, implying \(\frac {d(\rho _{s} V_{s})}{dt}=0\). Also, \(\frac {1}{V_{b}}\frac {dV_{b}}{dt} = \frac {d\epsilon }{dt}\). As a result, we get

$$ \begin{array}{@{}rcl@{}} \frac{d (\phi \rho_{\beta}S_{\beta})}{dt}+\nabla \cdot (\rho_{\beta}\mathbf{v}_{\beta})+ \rho_{\beta}S_{\beta}\phi \frac{d\epsilon}{dt} =q_{\beta} \end{array} $$
(A.7)

Adding and subtracting \(\epsilon \frac {d (\phi \rho _{\beta }S_{\beta })}{d t}\) to Eq. A.7, we get

$$ \begin{array}{@{}rcl@{}} \frac{d (\phi^{*} \rho_{\beta}S_{\beta})}{dt}+\nabla \cdot (\rho_{\beta}\mathbf{v}_{\beta})- \epsilon\frac{d (\phi \rho_{\beta}S_{\beta})}{d t} =q_{\beta} \end{array} $$
(A.8)

Knowing the quasi-static nature of deformation i.e. ∥vs∥ << 1, we get

$$ \begin{array}{@{}rcl@{}} \mathbf{v}_{s} \cdot \nabla (\phi^{*} \rho_{\beta}S_{\beta}) &<<& \frac{\partial (\phi^{*} \rho_{\beta}S_{\beta})}{\partial t}, \quad \mathbf{v}_{s} \cdot \nabla (\phi \rho_{\beta}S_{\beta}) \\&<<& \frac{\partial (\phi \rho_{\beta}S_{\beta})}{\partial t} \end{array} $$

which, in lieu of Eq. A.3, implies that

$$ \begin{array}{@{}rcl@{}} \frac{d (\phi^{*} \rho_{\beta}S_{\beta})}{d t}\approx \frac{\partial (\phi^{*} \rho_{\beta}S_{\beta})}{\partial t}, \quad \frac{d (\phi \rho_{\beta}S_{\beta})}{d t}\approx \frac{\partial (\phi \rho_{\beta}S_{\beta})}{\partial t} \end{array} $$

In lieu of the above, we obtain (A.8) as

$$ \begin{array}{@{}rcl@{}} \frac{\partial (\phi^{*} \rho_{\beta}S_{\beta})}{\partial t}+\nabla \cdot (\rho_{\beta}\mathbf{v}_{\beta})- \epsilon\frac{\partial (\phi \rho_{\beta}S_{\beta})}{\partial t} =q_{\beta} \end{array} $$
(A.9)

Although typically in literature, the last term \(\epsilon \frac {\partial (\phi \rho _{\beta }S_{\beta })}{\partial t}\) on the left hand side is ignored in lieu of the small strain deformation assumption 𝜖 << 1, we retain it in this formulation to give due diligence to the fact that the geomechanical feedback from the poromechanics to the flow model is in the form of post-processed volumetric strains.

B Mixed Finite Element Formulation for the Flow Model

Let \({\mathscr{T}}_{h}\) be the finite element partition of Ω consisting of elements E. The problem statement is : Find \(\tilde {\mathbf {z}}_{\beta _{h}},\mathbf {z}_{\beta _{h}}\in \mathbf {V}_{h}\) and \(p_{\beta _{h}},S_{w},S_{o}\in W_{h}\) such that

$$ \begin{array}{@{}rcl@{}} \left.\begin{array}{c} \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\mathbf{K}^{-1}\tilde{\mathbf{z}} {o_{h}}\cdot \mathbf{v}=\sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E} \big[ p_{o_{h}}\nabla \cdot \mathbf{v}+\rho_{o} \mathbf{g}\cdot \mathbf{v}\big]\\ \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\mathbf{K}^{-1}\tilde{\mathbf{z}} {w_{h}}{}\cdot{} \mathbf{v} = \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\big[p_{o_{h}}\nabla {}\cdot{} \mathbf{v} - p_{c_{h}}\nabla {}\cdot{} \mathbf{v} + \rho_{w} \mathbf{g{}}\cdot{} \mathbf{v}\big]\\ \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\big[\phi^{*} \rho_{o}S_{o}-\epsilon\phi \rho_{\beta}S_{o}+{\Delta} t\nabla \cdot \mathbf{z}_{o_{h}}\big]w \\=\sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\big[(\phi^{*} \rho_{o}S_{o})^{n}-\epsilon(\phi \rho_{o}S_{o})^{n}+{\Delta} tq_{o}\big]w\\ \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\big[\phi^{*} \rho_{w}S_{w}-\epsilon\phi \rho_{w}S_{w}+{\Delta} t\nabla \cdot \mathbf{z}_{w_{h}}\big]w \\=\sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\big[(\phi^{*} \rho_{w}S_{w})^{n}-\epsilon(\phi \rho_{w}S_{w})^{n}+{\Delta} tq_{w}\big]w\\ \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\mathbf{z}_{o_{h}}\cdot \mathbf{v}=\sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\lambda_{o}\tilde{\mathbf{z}}_{o_{h}}\cdot \mathbf{v}\\ \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\mathbf{z}_{w_{h}}\cdot \mathbf{v}=\sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\lambda_{w}\tilde{\mathbf{z}}_{w_{h}}\cdot \mathbf{v}\\ \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}\big[S_{w}+ S_{o} \big]w= \sum\limits_{E\in \mathscr{T}_{h}}\int\limits_{E}w \end{array}\right. \end{array} $$

where the terms (⋅)n are evaluated at the previous time step, the finite dimensional spaces Wh and Vh are given as

$$ \begin{array}{@{}rcl@{}} &&W_{h}\equiv \big\{w:w\vert_{E}\in \mathbb{P}_{0}(E) \forall E\in \mathscr{T}_{h}\big\}\\ &&\mathbf{V}_{h}\equiv \big\{\mathbf{v}:\mathbf{v}\vert_{E}\leftrightarrow \hat{\mathbf{v}}\vert_{\hat{E}}:\hat{\mathbf{v}}\vert_{\hat{E}}\in \hat{\mathbf{V}}(\hat{E}) \forall E\in \mathscr{T}_{h},\\&&\qquad\quad\mathbf{v} \cdot \mathbf{n}=0 \text{on} {{\varGamma}_{N}^{f}}\big\} \end{array} $$

and the details of \(\hat {\mathbf {V}}(\hat {E})\) are presented next. The notation \(\mathbf {v}\vert _{E}\leftrightarrow \hat {\mathbf {v}}\vert _{\hat {E}}\) means that the space of velocities v on E correspond to the space of velocities \(\hat {\mathbf {v}}\) on \(\hat {E}\). Let \(\mathbf {V}^{*}_{h}\times W_{h}\) be the lowest order BDDF1 MFE spaces on hexahedra [63]. With \(\mathbf {x}\equiv (\hat {x},\hat {y},\hat {z})\in \hat {E}\), these spaces are defined on \(\hat {E}\) as

$$ \begin{array}{@{}rcl@{}} \hat{\mathbf{V}}^{*}(\hat{E})&=&(\mathbb{P}_{1}(\hat{E}))^{3} +r_{0} curl(0,0,\hat{x}\hat{y}\hat{z})^{T} \\&&+r_{1} curl(0,0,\hat{x}\hat{y}^{2})^{T} +s_{0} curl(\hat{x}\hat{y}\hat{z},0,0)^{T}\\ &&+s_{1} curl(\hat{y}\hat{z}^{2},0,0)^{T} +t_{0} curl(0,\hat{x}\hat{y}\hat{z},0)^{T} \\&&+t_{1} curl(0,\hat{x}^{2}\hat{z},0)^{T}\\ \hat{W}(\hat{E})&=&\mathbb{P}_{0}(\hat{E}) \end{array} $$

with the following properties

$$ \begin{array}{@{}rcl@{}} &&\hat{\nabla} \cdot \hat{\mathbf{V}}^{*}(\hat{E})=\hat{W}(\hat{E}), \qquad \text{and} \qquad \forall \hat{\mathbf{v}}\in \hat{\mathbf{V}}^{*}(\hat{E}),\\&&\forall \hat{e}\subset \partial \hat{E}, \hat{\mathbf{v}}\cdot \hat{\mathbf{n}}_{\hat{e}}\in \mathbb{P}_{1}(\hat{e}) \end{array} $$

where \(\hat {e}\) represents a face of \(\hat {E}\) and \(\hat {\mathbf {n}}_{\hat {e}}\) the unit outward normal to \(\hat {e}\). The multipoint flux approximation procedure requires on each face one velocity degree of freedom to be associated with each vertex thus requiring four degrees of freedom per face. Since \(\mathbf {V}^{*}_{h}\) has only three degrees of freedom per face, it is augmented with one degree of freedom per face resulting in addition of six degrees of freedom per element. Since the properties of constant divergence, linear independence of the shape functions and continuity of the normal component across the element faces are to be preserved, six curl terms are added (see [64]) to \(\mathbf {V}^{*}_{h}\). Let Vh × Wh be the enhanced BDDF1 spaces on hexahedra. On \(\hat {E}\), these spaces are

$$ \begin{array}{@{}rcl@{}} \hat{\mathbf{V}}(\hat{E})&=&\hat{\mathbf{V}}^{*}(\hat{E}) +r_{2} curl(0,0,\hat{x}^{2}\hat{z})^{T} \\&&+r_{3} curl(0,0,\hat{x}^{2}\hat{y}\hat{z})^{T} +s_{2} curl(\hat{x}\hat{y}^{2},0,0)^{T}\\ &&+s_{3} curl(\hat{x}\hat{y}^{2}\hat{z}^{2},0,0)^{T} +t_{2} curl(0,\hat{y}\hat{z}^{2},0)^{T} \\&&+t_{3} curl(0,\hat{x}\hat{y}\hat{z}^{2},0)^{T}\\ \hat{W}(\hat{E})&=&\mathbb{P}_{0}(\hat{E}) \end{array} $$

with the following properties

$$ \begin{array}{@{}rcl@{}} &&\hat{\nabla} \cdot \hat{\mathbf{V}}(\hat{E})=\hat{W}(\hat{E}), \qquad \text{and} \qquad \forall \hat{\mathbf{v}}\in \hat{\mathbf{V}}(\hat{E}),\\&&\forall \hat{e}\subset \partial \hat{E}, \hat{\mathbf{v}}\cdot \hat{\mathbf{n}}_{\hat{e}}\in \mathbb{Q}_{1}(\hat{e}) \end{array} $$

Since \(dim \mathbb {Q}_{1}(\hat {e})=4\), the dimension of \(\hat {\mathbf {V}}(\hat {E})\) is 24 as shown in Fig. 10.

Fig. 10
figure 10

Degrees of freedom and basis functions for the enhanced BDDF1 velocity space on hexahedra

C Derivation of mass conservation equation for the popular Biot system

The mass conservation equation of the popular ‘Biot’ set of equations is pertinent to linearized single phase flow coupled with linear poromechanics, and is a special case of Eq. A.9 with β = 1, Sβ = 1, and the last term \(\epsilon \frac {\partial (\phi \rho _{\beta }S_{\beta })}{\partial t}\) on the left hand side ignored. We rewrite (A.9) as

$$ \begin{array}{@{}rcl@{}} \frac{\partial (\phi^{*} \rho)}{\partial t}-\nabla \cdot (\rho\boldsymbol{\kappa}(\nabla p-\rho \mathbf{g}))=q \end{array} $$
(C.1)

We first comment that the difference between the slightly compressible single phase flow model and the linearized flow model lies in the expression for the density variation as a function of pore pressure. The former models the density variation as \(\rho =\rho _{0} e^{c(p-p_{0})}\) which when expanded as a Taylor series, is written as ρ = ρ0(1 + c(pp0) + c2(pp0)/2! + ⋯ ) which, after noting \(c=\mathcal {O}(10^{-6})\), can be approximated as

$$ \begin{array}{@{}rcl@{}} \rho\approx \rho_{0} (1+c(p-p_{0})) \end{array} $$
(C.2)

after truncating the expansion to the first order term. We also note that while the slightly compressible single phase flow might require a nonlinear solve with Newton iterations within every coupling iteration, the linearized flow model requires only one solve within every coupling iteration. Furthermore, the Lagrangian porosity variation, instead of having two different expressions for the flow solve and the poromechanics solve as we saw in modules Sections 2.2.1 and 2.2.2 respectively, has only one expression given by

$$ \begin{array}{@{}rcl@{}} \phi^{*}= \phi_{0}+\alpha \epsilon+\frac{1}{N}(p-p_{0}) \end{array} $$
(C.3)

with \(\frac {1}{N}\equiv \frac {(\alpha -\phi _{0})(1-\alpha )}{K_{b}}\) in lieu of Eq. 2.8. We substitute (C.2) and (C.3) in (C.1), and divide by ρ0 to get

$$ \begin{array}{@{}rcl@{}} &&\frac{\partial (\phi_{0}+\alpha \epsilon+\frac{1}{N}(p-p_{0}))}{\partial t}+(\phi_{0}+\alpha \epsilon)c\frac{\partial (p-p_{0})}{\partial t}\\&&+c(p-p_{0})\frac{\partial (\phi_{0}+\alpha\epsilon)}{\partial t}\\ &&+\frac{\partial (\frac{1}{N}(p-p_{0})c(p-p_{0}))}{\partial t}-\nabla\\&& \cdot (\boldsymbol{\kappa}(1+c(p-p_{0}))(\nabla p-\rho \mathbf{g}))=\frac{q}{\rho_{0}} \end{array} $$

which, in lieu of \(\epsilon =\mathcal {O}(10^{-3})\) resulting in α𝜖ϕ0, and \(\frac {\partial \phi _{0}}{\partial t}=\frac {\partial p_{0}}{\partial t}=0\), is written as

$$ \begin{array}{@{}rcl@{}} &&\!\!\!\!\frac{\partial (\alpha \epsilon+\frac{1}{N}p+\phi_{0} cp)}{\partial t}+\frac{2c}{N}(p-p_{0})\frac{\partial p}{\partial t}+\alpha c(p-p_{0})\frac{\partial \epsilon}{\partial t}\\ &&\!\!\!\!-\nabla \cdot (\boldsymbol{\kappa}c(p-p_{0})(\nabla p-\rho \mathbf{g}))-\nabla \cdot (\boldsymbol{\kappa}(\nabla p-\rho \mathbf{g}))=\frac{q}{\rho_{0}} \end{array} $$

We neglect the nonlinear terms \(\frac {2c}{N}(p-p_{0})\frac {\partial p}{\partial t}\), \(\alpha c(p-p_{0})\frac {\partial \epsilon }{\partial t}\) and ∇⋅ (κc(pp0)(∇pρg)) to obtain

$$ \begin{array}{@{}rcl@{}} &\frac{\partial \zeta}{\partial t}-\nabla \cdot (\boldsymbol{\kappa}(\nabla p-\rho \mathbf{g}))=\frac{q}{\rho_{0}} \end{array} $$

where \(\zeta = \alpha \epsilon +\frac {1}{N}p+\phi _{0} cp \equiv \alpha \epsilon + \frac {1}{M}p\) is refered to as the fluid content and \(\frac {1}{M}=\frac {1}{N}+\phi _{0} c \equiv \phi _{0} c+\frac {(\alpha -\phi _{0})(1-\alpha )}{K_{b}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dana, S., Jammoul, M. & Wheeler, M.F. Performance studies of the fixed stress split algorithm for immiscible two-phase flow coupled with linear poromechanics. Comput Geosci 26, 13–27 (2022). https://doi.org/10.1007/s10596-021-10110-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10110-w

Keywords

Navigation