Skip to main content
Log in

Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The increasing applications of fractional calculus in simulating the anomalous transport behavior in disordered and fractured heterogeneous porous media has grown rapidly over the past decade. In the present study, a temporal fractional flux relationship is employed as a constitutive equation to relate the volumetric flow rate to the gradient of the pore pressure. The novelty of this paper entails interpreting the time fractional derivative operator in the flux relationship by the Grünwald-Letnikov (G-L) definition as opposed to the Caputo interpretation which has been widely considered. Subsequently, a numerical scheme based on the block-centered finite-difference discretization is formulated to handle the resulting non-linear fractional diffusion model. In addition, a linear stability analysis is successfully performed to establish the stability criterion of the developed numerical scheme. An expression for the modified incremental material balance index was derived to assess the effectiveness of the numerical discretization process. Finally, numerical experiments were performed to provide qualitative insights into the nature of pressure evolution in a hydrocarbon reservoir under the influence subdiffusion. In summary, the results establish that subdiffusion regime results in the development of higher pressure drop in the reservoir. This paper will provide a strong foundation for researchers interested in investigating anomalous diffusion phenomena in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A x :

Cross-sectional area of rock perpendicular to the flow of flowing fluid in x direction (ft2)

A y :

Cross-sectional area of rock perpendicular to the flow of flowing fluid in y direction (ft2)

B o :

Oil formation volume factor (bbl stb− 1)

c o :

Oil compressibility (psi− 1)

c t :

Total compressibility of the systems (psi− 1)

c s :

Formation rock compressibility of the systems (psi− 1)

C :

Pseudo-compressibility, see Eq. 14

h :

Reservoir height (ft)

i :

Block centroid counter

I MB :

Incremental material balance index

K :

Absolute variable permeability (mD)

K γ :

Pseudo-permeability (mD day1−)

L :

Length of reservoir along x direction (ft)

m :

Block counter for multi-dimensional flow

n :

New time level

n − 1:

Old time level

p :

Pressure of the system (psia)

p i :

Initial pressure of the system (psia)

p 0 :

A reference pressure for the system (psia)

p wf :

Flowing bottom hole pressure (psia)

q sc :

Source term (stb day− 1)

r eqv :

Equivalent radius (ft)

r w :

Wellbore radius (ft)

R s :

Solution gas ratio (scf/stb)

t :

Time (day)

T :

Fluid transmissibility, see Eq. 14

T gw :

Pseudo-transmissibility for wellbore model, see Eq. 28

Temp:

Temperature (K)

u :

Filtration velocity in x direction (ft/day)

x :

Flow dimension at any point along the x-direction (ft)

α c :

Volumetric conversion factor, 5.615

β c :

Conversion factor, 1.127× 10− 3

c μ :

Fractional change in viscosity per unit change of pressure (psia− 1)

δ :

Finite difference kernel

γ :

fractional order of differentiation, dimensionless

ρ o :

Oil density (lb/ft3)

ρ 0 :

Reference density (lb/ft3)

ϕ :

Porosity, fraction

ϕ i :

Initial porosity, fraction

ϕ 0 :

Reference porosity, fraction

γ o :

Oil specific gravity

\({\sigma _{r}^{2}}\) :

Mean square displacement

μ :

fluid dynamic viscosity (cp)

μ ab :

Oil viscosity above bubble point pressure (cp)

μ ob :

Oil viscosity at bubble point pressure (cp)

η :

Phenomenological coefficient; (mD day1− cp− 1)

API:

American Petroleum Institute

bbl:

Reservoir barrel

stb:

Standard barrel

scf:

Standard cubic feet

1 ft:

0.3048 m

1 psia:

6.894757 kPa

1 cp:

0.001 Pa s− 1

1 bbl day− 1 :

0.1589873 std m3 day− 1

1R:

0.555556 K

1 lbm ft3 − 1 :

16.01846 kg/m3

1mD:

0.9869233 × 10− 6 m2

1 bbl stb− 1 :

1 m3/std m3

References

  1. Haus, J.W., Kehr, K.W., Lyklema, J.W.: Diffusion in a disordered medium. Phys. Rev. B. 25, 2905 (1982)

    Article  Google Scholar 

  2. Quastel, J.: Diffusion in Disordered Media. In: Nonlinear Stochastic PDEs, pp 65–79. Springer (1996)

  3. Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phys. 36, 695–798 (1987)

    Article  Google Scholar 

  4. Kirkwood, J.G., Baldwin, R.L., Dunlop, P.J., Gosting, L.J., Kegeles, G.: Flow equations and frames of reference for isothermal diffusion in liquids. J. Chem. Phys. 33, 1505–1513 (1960)

    Article  Google Scholar 

  5. Obembe, A.D., Abu-khamsin, S.A., Hossain, M.E.: Anomalous effects during thermal displacement in porous media under nonlocal thermal equilibrium. J. Porous Media. 21, 161–196 (2018)

    Article  Google Scholar 

  6. Ertekin, T., Abou-Kassem, J.H., King, G.R.: Basic Applied Reservoir Simulation. Society of Petroleum Engineers Richardson, TX (2001)

    Google Scholar 

  7. Jamal, H., SM, F.A., M Rafiq, I.: Petroleum Reservoir Simulation: A Basic Approach. Gulf Publishing Company, Houston (2006)

    Google Scholar 

  8. Obembe, A.D., Abu-Khamsin, S.A., Hossain, M.E.: A review of modeling thermal displacement processes in porous media. Arab. J. Sci. Eng. 41, 4719–4741 (2016)

    Article  Google Scholar 

  9. Mandelbrot, B.B.: The Fractal Geometry of Nature/Revised and Enlarged Edition, vol. 1983, p 1. WH Free Co., New York (1983)

    Google Scholar 

  10. Hardy, H.H., Beier, R.A.: Fractals in Reservoir Engineering. World Scientific, Singapore (1994)

    Book  Google Scholar 

  11. Lemehaute, A., Crepy, G.: Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ionics 9–10, 17–30 (1983)

    Article  Google Scholar 

  12. Nigmatullin, R.R.: On the theory of relaxation for systems with “remnant” memory. Phys. status solidi. 124, 389–393 (1984)

    Article  Google Scholar 

  13. Sahimi, M., Yortsos, Y.C.: Applications of Fractal Geometry to Porous Media: a Review. In: Annual Fall Meeting of the Society of Petroleum Engineers, New Orleans, LA (1990)

  14. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. status solidi. 133, 425–430 (1986)

    Article  Google Scholar 

  15. Giona, M., Roman, H.E.: Fractional diffusion equation for transport phenomena in random media. Phys. A Stat. Mech. Appl. 185, 87–97 (1992)

    Article  Google Scholar 

  16. Henry, B.I., Langlands, T.A.M., Straka, P.: An Introduction to Fractional Diffusion. World Scientific, Singapore (2010)

    Book  Google Scholar 

  17. Berkowitz, B., Scher, H.: On characterization of anomalous dispersion in porous and fractured media. Water Resour. Res. 31, 1461–1466 (1995)

    Article  Google Scholar 

  18. Li, B., Wang, J., Wang, L., Zhang, G.: Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. Chaos An Interdiscip. J. Nonlinear Sci. 15, 15121 (2005)

    Article  Google Scholar 

  19. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561–581 (2009)

    Article  Google Scholar 

  20. Camacho Velazquez, R., Fuentes-Cruz, G., Vasquez-Cruz, M.A.: Decline Curve Analysis of Fractured Reservoirs with Fractal Geometry. In: International Oil Conference and Exhibition in Mexico. SPE-104009-MS (2006)

  21. Acuna, J.A., Yortsos, Y.C.: Application of fractal geometry to the study of networks of fractures and their pressure transient. Water Resour. Res. 31, 527–540 (1995)

    Article  Google Scholar 

  22. Sahimi, M., Yortsos, Y.C.: Applications of Fractal Geometry to Porous Media: a Review, Paper SPE 20476. In: SPE Annual Technical Conference and Exhibition, New Orleans, LA (1990)

  23. Chang, J., Yortsos, Y.C.: Pressure transient analysis of fractal reservoirs. SPE Form. Eval. 5, 31–38 (1990)

    Article  Google Scholar 

  24. Razminia, K., Razminia, A., Machado, J.A.T.: Analysis of diffusion process in fractured reservoirs using fractional derivative approach. Commun. Nonlinear Sci. Numer. Simul. 19, 3161–3170 (2014)

    Article  Google Scholar 

  25. Obembe, A.D., Al-Yousef, H.Y., Hossain, E.M., Abu-khamsin, S.A.: Fractional derivatives and their applications in reservoir engineering: a review. J. Pet. Sci. Eng. 157, 312–327 (2017)

    Article  Google Scholar 

  26. Albinali, A., Ozkan, E.: Analytical Modeling of Flow in Highly Disordered, Fractured Nano-Porous Reservoirs. In: SPE Western Regional Meeting, 23-26 May, Anchorage, Alaska, USA. SPE-180440-MS (2016)

  27. Holy, R.W., Ozkan, E.: A Practical and Rigorous Approach for Production Data Analysis in Unconventional Wells. In: SPE Low Perm Symposium, 5-6 May, Denver, Colorado, USA. SPE-180240-MS (2016)

  28. Raghavan, R., Chen, C.: Rate Decline, Power Laws, and Subdiffusion in Fractured Rocks. In: SPE Low Perm Symposium, 5-6 May, Denver, Colorado, USA. SPE-180223-MS (2016)

  29. Raghavan, R., Chen, C.: Fractional diffusion in rocks produced by horizontal wells with multiple, transverse hydraulic fractures of finite conductivity. J. Pet. Sci. Eng. 109, 133–143 (2013)

    Article  Google Scholar 

  30. Obembe, A.D., Hasan, M., Fraim, M.: A Mathematical Model for Transient Testing of Naturally Fractured Shale Gas Reservoirs. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, 24-27 April, Dammam, Saudi Arabia. SPE-188058-MS (2017)

  31. Obembe, A.D., Hasan, M., Fraim, M.: An Anomalous Productivity Model for Naturally Fractured Shale Gas Reservoirs. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. SPE-188033-MS (2017)

  32. Razminia, K., Razminia, A., Baleanu, D.: Investigation of the fractional diffusion equation based on generalized integral quadrature technique. Appl. Math. Model. 39, 86–98 (2015)

    Article  Google Scholar 

  33. Raghavan, R.: Fractional diffusion: performance of fractured wells. J. Pet. Sci. Eng. 92, 167–173 (2012)

    Article  Google Scholar 

  34. Raghavan, R.: Fractional derivatives: application to transient flow. J. Pet. Sci. Eng. 80, 7–13 (2011)

    Article  Google Scholar 

  35. Ozcan, O., Sarak, H., Ozkan, E., Raghavan, R.S.: A Trilinear Flow Model for a Fractured Horizontal Well in a Fractal Unconventional Reservoir. In: SPE Annual Technical Conference and Exhibition, 27-29 October, Amsterdam, the Netherlands. SPE-170971-MS (2014)

  36. Ozcan, O.: Fractional diffusion in naturally fractured unconventional reservoirs, http://hdl.handle.net/11124/10641 (2014)

  37. Cáceres, M.O.: Diffusion in Disordered Media. In: Non-Equilibrium Statistical Physics with Application to Disordered Systems, pp 335–385. Springer (2017)

  38. Awotunde, A.A., Ghanam, R.A., Al-Homidan, S.S., Nasser-eddine, T.: Numerical schemes for anomalous diffusion of single-phase fluids in porous media. Commun. Nonlinear Sci. Numer. Simul (2016)

  39. Hossain, M.E., Abu-khamsin, S.A.: Development of dimensionless numbers for heat transfer in porous media using a memory concept. J. Porous Media. 15, 18 (2012)

    Google Scholar 

  40. Caputo, M.: Diffusion of fluids in porous media with memory. Geothermics. 28, 2–19 (1998)

    Google Scholar 

  41. Obembe, A.D., Hossain, M.E., Abu-Khamsin, S.A.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Pet. Sci. Eng. 152, 391–405 (2017)

    Article  Google Scholar 

  42. Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations. pp. 46 (2007)

  43. Caputo, M.: Models of flux in porous media with memory. Water Resour. Res. 36, 693–705 (2000)

    Article  Google Scholar 

  44. Caputo, S.M.: The green function of the diffusion of fluids in porous media with memory. Rend. Lincei. 7, 243–250 (1996)

    Article  Google Scholar 

  45. Caputo, M., Plastino, W.: Diffusion in porous layers with memory. Geophys. J. Int. 158, 385–396 (2004)

    Article  Google Scholar 

  46. Sun, H., Li, Z., Zhang, Y., Chen, W.: Fractional and Fractal Derivative Models for Transient Anomalous Diffusion: Model Comparison. Chaos, Solitons & Fractals (2017)

  47. Liu, X., Sun, H.-G., Lazarević, M.P., Fu, Z.: A variable-order fractal derivative model for anomalous diffusion. Therm. Sci. 21, 51–59 (2017)

    Article  Google Scholar 

  48. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  Google Scholar 

  49. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. with Appl. 56, 1138–1145 (2008)

    Article  Google Scholar 

  50. Obembe, A.D., Hossain, M.E., Mustapha, K., Abu-Khamsin, S.A.: A modified memory-based mathematical model describing fluid flow in porous media. Comput. Math. with Appl. 73, 1385–1402 (2017)

    Article  Google Scholar 

  51. MacDonald, C.L., Bhattacharya, N., Sprouse, B.P., Silva, G.A.: Efficient computation of the grünwald-letnikov fractional diffusion derivative using adaptive time step memory. J. Comput. Phys. (2015)

  52. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications, vol. 1993. Gordon and Breach, Yverdon (1993)

    Google Scholar 

  53. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, Cambridge (1974)

    Google Scholar 

  54. Chen, C., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction–subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)

    Google Scholar 

  55. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009)

    Article  Google Scholar 

  56. Mustapha, K.: An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31, 719–739 (2011)

    Article  Google Scholar 

  57. Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algorithms 61, 525–543 (2012)

    Article  Google Scholar 

  58. Sunarto, A., Sulaiman, J., Saudi, A.: Implicit Finite Difference Solution for Time-Fractional Diffusion Equations Using AOR Method. In: Journal of Physics: Conference Series. p. 12032. IOP Publishing (2014)

  59. Amir, S.Z., Sun, S.: Physics-preserving averaging scheme based on Grunwald-Letnikov formula for gas flow in fractured media. J. Pet. Sci. Eng. In Press (2018)

  60. Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)

    Article  Google Scholar 

  61. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  Google Scholar 

  62. Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  Google Scholar 

  63. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    Google Scholar 

  64. Wei, S., Chen, W., Hon, Y.C.: Characterizing time dependent anomalous diffusion process: a survey on fractional derivative and nonlinear models. Phys. A Stat. Mech. its Appl. 462, 1244–1251 (2016)

    Article  Google Scholar 

  65. Chen, W., Pang, G.: A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction. J. Comput. Phys. 309, 350–367 (2016)

    Article  Google Scholar 

  66. Lie, K.A.: An introduction to reservoir simulation using MATLAB: User guide for the Matlab reservoir simulation toolbox (MRST) SINTEF ICT (2016)

  67. Park, H.W., Choe, J., Kang, J.M.: Pressure behavior of transport in fractal porous media using a fractional calculus approach. Energy Sources 22, 881–890 (2000)

    Article  Google Scholar 

  68. Luchko, Y., Punzi, A.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. GEM-International J. Geomathematics 1, 257–276 (2011)

    Article  Google Scholar 

  69. Ilyasov, M., Ostermann, I., Punzi, A.: Modeling Deep Geothermal Reservoirs: Recent Advances and Future Problems. In: Handbook of Geomathematics, pp 679–711. Springer (2010)

  70. Martino, S., Caputo, M., Iaffaldano, G.: Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth Syst. Sci. Discuss. 10, 93–100 (2006)

    Article  Google Scholar 

  71. Giuseppe, E.D., Moroni, M., Caputo, M.: Flux in porous media with memory?: Models and experiments. Transp. Porous Media 83, 479–500 (2010)

    Article  Google Scholar 

  72. Peaceman, D.W.: Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. Soc. Pet. Eng. J. 23, 531–543 (1983)

    Article  Google Scholar 

  73. Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms [D5]. Commun. ACM. 13, 47–49 (1970)

    Article  Google Scholar 

  74. Almehaideb, R.A.: Improved correlations for fluid properties of UAE crude oils. Pet. Sci. Technol. 21, 1811–1831 (2003)

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the support provided via King Abdulaziz City for Science and Technology (KACST), through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), for funding this work through project No. 11-OIL1661-04, as part of the National Science Technology and Innovation Plan (NSTIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enamul Hossain.

Appendices

Appendix A: Definition of pseudo-diffusivity term

To solve the fractional flow model presented, we employ the Carman-Kozeny (1939) permeability-porosity relationship to describe the evolution of the pseudo-permeability. The pseudo-diffusivity is defined as shown below.

$$ \eta \,=\,\frac{K_{\gamma }}{\mu_{\text{ob}}\thinspace \exp\left[ c_{\mu }\left( p\,-\,p_{b} \right) \right]}\thinspace \text{with}\thinspace \thinspace K_{\gamma }\,=\,\frac{1}{72\tau }\frac{\phi^{3}{d_{p}^{2}}}{\left( 1\!-\phi \right)^{2}} $$
(1)

Please refer to nomenclature section for the definition of variables introduced above.

In addition, we assume the reservoir fluid to be typical of UAE crude oil, defined through the following empirical correlations presented by [74]:

$$ \mu =\mu_{ob}\thinspace \exp\left[ c_{\mu }\left( p-p_{b} \right)\right] $$
(2)

where μob is the oil viscosity at bubble point pressure obtained from:

$$\begin{array}{@{}rcl@{}} \mu_{\text{ob}}&=&6.59927\times {10}^{5}R_{s}^{-0.597627}T^{-0.941624}\\&&\times \gamma_{g}^{-0.555208}{\text{API}}^{-1.487449} \end{array} $$
(3)
$$ p_{b}=-620.592 + 6.23087\thinspace \frac{R_{s}\gamma_{o}}{\gamma_{g}B_{o}^{1.38559}}+ 2.89868\thinspace T $$
(4)
$$ B_{\text{ob}}= 1.122018 + 1.410\times {10}^{-6}\frac{R_{s}T}{\gamma_{o}^{2}} $$
(5)
$$ c_{o}\,=\,\frac{\left( 1433 + 5R_{s}+ 17.2T-1180\gamma_{g}+ 12.61\thinspace \text{API} \right)}{\left( p\times {10}^{5} \right)} $$
(6)

Appendix B: Derivation of incremental balance check equation

In this section, the incremental material balance check at time level n + 1 including the effect of memory is derived by writing Eq. 19 for each grid block in the system (m = 1, 2, 3 ... M) and then summing up all m equations. The resulting equation is:

$$\begin{array}{@{}rcl@{}} &&{\sum}_{m = 1}^{M} \left\{ {\sum}_{l\epsilon \psi_{m}} T_{\mathrm{l,m}}^{n + 1} \left[ \left( p_{l}^{n + 1}+p_{m}^{n + 1} \right) \right] \right\} \\&&+{\sum}_{m = 1}^{M} \left( {\sum}_{l\epsilon \xi_{m}} q_{{\text{sc}}_{\mathrm{l,m,n}}}^{n + 1} +q_{\mathrm{sc,m}}^{n + 1}+q_{\mathrm{memory,m}}^{n + 1} \right) = \end{array} $$
$$ {\sum}_{m = 1}^{M} {\frac{V_{\text{bm}}}{{\Delta} t}\left[ \left( \frac{\phi }{B_{o}} \right)_{m}^{n + 1}-\left( \frac{\phi }{B_{o}} \right)_{m}^{n} \right]} $$
(7)

The sum of all inter-block flow terms in the reservoir, which are expressed by the first term on the LHS of Eq. (B.1), add up to zero, while the second term on the LHS represents the M algebraic sum of all production rates through wells \({\sum }_{m = 1}^{M} q_{\mathrm {sc,m}}^{n + 1} \), those across reservoir \(\left ({\sum }_{m = 1}^{M} {\sum }_{l\epsilon \xi _{m}} q_{{\text {sc}}_{\mathrm {l,m,n}}}^{n + 1} \right )\), and those resulting from the effect of memory \({\sum }_{m = 1}^{M} q_{\mathrm {memory,m}}^{n + 1} \).The RHS of this equation represents the sum of the accumulation terms in all blocks in the reservoir. Therefore, Eq. B.1 becomes

$$\begin{array}{@{}rcl@{}} &&{\sum}_{m = 1}^{M} \left( {\sum}_{l\epsilon \xi_{m}} q_{{\text{sc}}_{\mathrm{l,m,n}}}^{n + 1} +q_{\mathrm{sc,m}}^{n + 1}+q_{\mathrm{memory,m}}^{n + 1} \right) \\&&={\sum}_{m = 1}^{M} {\frac{V_{bm}}{{\Delta} t}\left[ \left( \frac{\phi }{B_{o}} \right)_{m}^{n + 1}-\left( \frac{\phi }{B_{o}} \right)_{m}^{n} \right]} \end{array} $$
(8)

Dividing (B.2) by the term on the LHS yields

$$ 1=\frac{{\sum}_{m = 1}^{M} {\frac{V_{bm}}{{\Delta} t}\left[ \left( \frac{\phi }{B_{o}} \right)_{m}^{n + 1}-\left( \frac{\phi }{B_{o}} \right)_{m}^{n} \right]} }{{\sum}_{m = 1}^{M} \left( {\sum}_{\mathrm{l\epsilon }\mathrm{\xi }_{\mathrm{m}}} q_{{\text{sc}}_{\mathrm{l,m,n}}}^{n + 1} +q_{\mathrm{sc,m}}^{n + 1}+q_{\mathrm{memory,m}}^{n + 1} \right) } $$
(9)

where

$$\begin{array}{@{}rcl@{}} q_{\mathrm{memory,m}}^{n + 1}&=&{\sum}_{k = 1}^{\frac{t}{{\Delta} t}} \psi \left( \gamma ,k \right){\sum}_{\mathrm{l\epsilon }\mathrm{\psi }_{\mathrm{m}}} T_{l,m}^{n + 1}\\&&\times \left[ \left( P_{l}^{n + 1-k}+P_{m}^{n + 1-k} \right) \right] \end{array} $$
(10)

Appendix C: Analytical solution to simplified fractional diffusion model

Applying to both sides of Eq. 11, the operation of fractional integration leads to the following fractional diffusion equation:

$$ \frac{\partial }{\partial x}\left( \thinspace \thinspace \frac{\beta_{c}K_{\gamma }}{\mu_{o}}\frac{A_{x}}{B_{o}}\frac{\partial p}{\partial x} \right){\Delta} x=\left( \frac{V_{b}\phi c_{t}}{\alpha_{c}B_{\text{ob}}} \right)\frac{\partial^{\gamma }p}{{\partial t}^{\gamma }}\thinspace $$
(11)

Initial condition:

$$ p\left( x,0 \right)=p_{i} $$
(12)

Boundary conditions:

$$ Q_{x0}=-\left( \frac{\beta_{c}K_{\gamma }A}{\mu_{o}B_{o}} \right)\frac{\partial^{1-\gamma }}{{\partial t}^{1-\gamma }}\left( \frac{\partial p}{\partial x} \right)_{x = 0}=\text{constant} $$
(13)
$$ \left( p \right)_{x=L}=p_{i} $$
(14)

For convenience, the rock and fluid properties are considered as constant.

Taking the Laplace transform of Eq. C.1 with respect to time leads to:

$$ \sigma_{1}\hat{P}_{xx}=\sigma_{2}\left[ s^{\gamma }\hat{P}-s^{\gamma -1}p_{i} \right] $$
(15)

With the coefficients defined below are all constants.

$$ \sigma_{1}=\frac{\beta_{c}K_{\gamma }}{\mu_{o}}\frac{A_{x}{\Delta} x}{B_{o}}\thinspace ,\thinspace \sigma_{2}=\frac{V_{b}\phi c_{t}}{\alpha _{c}B_{o}}\thinspace \thinspace ,\mathrm{{\Theta} }=\thinspace \frac{\sigma_{2}}{\sigma_{1}}=\frac{\phi \mu_{o}c_{t}}{\beta_{c}\alpha_{c}K_{\gamma }}. $$
(16)

Therefore (C.5) can be re-written as:

$$ \hat{P}_{\text{xx}}-s^{\gamma }\mathrm{{\Theta} }\hat{P}=-\mathrm{{\Theta} }s^{\gamma -1}p_{i} $$
(17)

Equation C.7 is a non-homogeneous second order differential equation hence the solution would consist of the complimentary and the particular-solution.

Taking the auxiliary solution of \(\hat {P}_{\text {xx}}-s^{\gamma }\mathrm {{\Theta } }\hat {P}= 0\), gives:

$$ m^{2}-s^{\gamma }{\Theta} = 0 $$
(18)

and then, \(m=\pm \sqrt {s^{\gamma }{\Theta } } \). Hence, the complimentary solution is:

$$ \hat{P}_{c}=c_{1}e^{\left( \sqrt {s^{\gamma }{\Theta} } \right)x}+c_{2}e^{-\left( \sqrt {s^{\gamma }{\Theta} } \right)x} $$
(19)

where c1 and c2 are two constants to be determined from the boundary conditions. Noting that the right-hand side (RHS) of Eq. C.7 is independent of the space variable x, so \(\hat {P}_{p}=\frac {p_{i}}{s}\) forms a particular-solution of Eq. C.7.

$$ \hat{P}(x)=c_{1}e^{\left( \sqrt {s^{\gamma }{\Theta} } \right)x}+c_{2}e^{-\left( \sqrt {s^{\gamma }{\Theta} } \right)x}+\frac{p_{i}}{s}\thinspace $$
(20)

Therefore, Eq. C.10 is a general solution of Eq. C.7. To determine c1 and c2, we take the Laplace transform of the boundary conditions represented by Eqs. C.3 and C.4. From Eq. C.3, we observe:

$$ {s^{1-\gamma }\hat{P}}_{x}\left( \mathrm{0} \right)=-\frac{Q_{\mathrm{x0}}\mu_{o}B_{o}}{{\beta_{c}K}_{\gamma }A\thinspace s}=:\frac{\sigma_{4}}{s} $$
(21)

Simplifying (C.11) leads to:

$$ \hat{P}_{x}\left( \mathrm{0} \right)=\frac{\sigma_{4}}{s^{2-\gamma }} $$
(22)

Likewise, at right boundary condition, Eq. C.4 we observe:

$$ \thinspace \hat{P}_{x=L}=\frac{p_{i}}{s} $$
(23)

Thus, applying the boundary condition (C.12) into Eq. C.10 leads to:

$$ \hat{P}_{x}\left( \mathrm{0} \right)=\frac{\sigma_{4}}{s^{2-\gamma }}\thinspace =c_{1}\left( \sqrt {s^{\gamma }{\Theta} } \right)-c_{2}\left( \sqrt{s^{\gamma }{\Theta} } \right) $$
(24)

Therefore, it follows that:

$$ c_{1}=\frac{\sigma_{4}}{s^{2-\gamma }\sqrt {s^{\gamma }{\Theta} } }+c_{2} $$
(25)

Likewise substituting (C.13) into Eq. C.10 leads to:

$$ \frac{p_{i}}{s}=c_{1}e^{\left( \sqrt {s^{\gamma }{\Theta} } \right)L}+c_{2}e^{-\left( \sqrt {s^{\gamma }{\Theta} } \right)L}+\frac{p_{i}}{s} $$
(26)

Substituting (C.15) into (C.16) returns:

$$ \left[ \frac{\sigma_{4}}{s^{2-\gamma }\sqrt {s^{\gamma }{\Theta} } }+c_{2} \right]\thinspace e^{\left( \sqrt {s^{\gamma }{\Theta} } \right)L}+c_{2}e^{-\left( \sqrt {s^{\gamma }{\Theta} } \right)L}= 0 $$
(27)

Simplifying (C.17) results in:

$$ c_{2}\left[ e^{\left( \sqrt {s^{\gamma }{\Theta} } \right)L}+e^{-\left( \sqrt {s^{\gamma }{\Theta} } \right)L} \right]+\frac{\sigma_{4}}{s^{2-\gamma }\sqrt {s^{\gamma }{\Theta} } }e^{\left( \sqrt {s^{\gamma }{\Theta} } \right)L}= 0\thinspace $$
(28)

Therefore,

$$ c_{2}=-\frac{\sigma_{4}}{s^{2-\gamma }\sqrt {s^{\gamma }{\Theta} } \left[ 1+e^{-\left( 2\sqrt {s^{\gamma }{\Theta} } \right)L} \right]}\thinspace $$
(29)

Consequently,

$$ c_{1}=\frac{\sigma_{4}}{s^{2-\gamma }\sqrt {s^{\gamma }{\Theta} } }\left[ \frac{e^{-2\left( \sqrt {s^{\gamma }{\Theta} } \right)L}}{1+e^{-2\left( \sqrt {s^{\gamma }{\Theta} } \right)L}} \right] $$
(30)

Finally, the Pressure profile in the reservoir in Laplace space is expressed by:

$$ \hat{P}=\frac{\sigma_{4}}{s^{2-\gamma }\sqrt {s^{\gamma }{\Theta} } }\left[ \frac{e^{\left( \sqrt {s^{\gamma }{\Theta} } \right)\left( x-2L \right)}-e^{-\left( \sqrt {s^{\gamma }{\Theta} } \right)x}}{1+e^{-2\left( \sqrt {s^{\gamma }{\Theta} } \right)L}} \right]+\frac{p_{i}}{s} $$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obembe, A.D., Abu-Khamsin, S.A., Hossain, M.E. et al. Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model. Comput Geosci 22, 1231–1250 (2018). https://doi.org/10.1007/s10596-018-9749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9749-1

Keywords

Navigation