Skip to main content

Advertisement

Log in

A Review of Modeling Thermal Displacement Processes in Porous Media

  • Review Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The subject of heat transfer in oil reservoirs has gained huge attention, due to its diverse range of applications in petroleum reservoir management and thermal recovery for enhanced oil recovery. Thermal recovery methods entail the addition of heat energy into the reservoir through injection wells with the aim of reducing the in situ oil viscosity which is usually around several thousand centipoise cP (in S.I unit kg/m s) at reservoir conditions to very low values at steam temperatures. In addition, several other mechanisms are associated with thermal recovery methods. These include thermal expansion of oil, steam distillation, and relative permeability changes, which contribute to the ultimate recovery of the reservoir. In this article, a detailed review of non-isothermal modeling in an oil reservoir is presented. In addition, a few remarks regarding the momentum transport and the energy balance equations and its various modifications through the years are provided. Finally, a memory-based formulation is proposed to capture the alteration of rock and fluid properties with time as well as accounting for other phenomena not described by classic diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(a_{\mathrm{sf}}\) :

Specific surface area (fluid to solid contact) (\(\hbox {m}^{2}\))

\(A\left( t \right) \) :

Cumulative heated area (\(\hbox {m}^{2}\))

\(c_\mathrm{F} \) :

Non-dimensional form-drag constant

\(c_\mathrm{p} \) :

Specific heat (J/kg K)

C :

Component

\(C_\mathrm{c} \) :

Coke concentration (gmol/\(\hbox {m}^{3}\))

\(d_\mathrm{p} \) :

Spherical particle diameter (m)

Da :

Darcy number, \(\kappa /{L^{2}}\), dimensionless

\(E_\mathrm{H} \) :

Heating efficiency, percentage

g :

Acceleration due to gravity (m/s\(^{2}\))

h :

Pay thickness (m)

\(h_{\mathrm{sf}} \) :

Fluid to solid heat transfer coefficient (W/m\(^{2}\) K)

H :

Aquifer height (m)

\(H_\mathrm{o} \) :

Heat injection rate (J/s)

k :

Thermal conductivity (W/m K)

K :

Permeability (\(\hbox {m}^{2}\))

P :

Pressure (Pa)

q :

Heat flux (W/m\(^{2}\))

Q(t):

Heat stored in the pay zone (J)

Ra :

Rayleigh number, dimensionless

\(Re_{dp}\) :

Reynolds number based on particle diameter, \(\rho u\frac{d_p }{\mu }\) dimensionless

\(Re_\kappa \) :

Reynolds number based on permeability, \(\rho \sqrt{\kappa }\frac{u}{\mu }\), dimensionless

r :

Radial distance (m)

R :

Thermal retardation factor

S :

Saturation, fraction

t :

Time (s)

T :

Temperature (K)

\({u}\) :

Velocity vector (m/s)

\(U_{hz} ( {x,y,z,t})\) :

Heat flux in the vertical direction (J/s)

v :

Heat velocity (m/s)

\(x_D \) :

Dimensionless distance

z :

Vertical distance (m)

\(\alpha \) :

Thermal diffusivity (\(\hbox {m}^{2}/\hbox {s}\))

\(\alpha _\mathrm{L} \) :

Longitudinal dispersivity (m)

\(\alpha _t \) :

Transverse dispersivity (m)

\({\alpha }'\) :

Overburden thermal diffusivity (\(\hbox {m}^{2}/\hbox {s}\))

\(\gamma \) :

Fractional-order derivative

\(\eta \) :

Pseudo-diffusivity (\(\hbox {m}^{3}\,\hbox {s}^{2-\gamma }/\hbox {kg}\))

\(\mu \) :

Dynamic viscosity (kg/m s)

\(\kappa \) :

Thermal dispersion tensor (W/m K)

\(\nu \) :

Kinematic viscosity (\(\hbox {m}^{2}/\hbox {s}\))

\(\rho \) :

Fluid density (\(\hbox {kg/m}^{3}\))

\(\sigma _r \) :

Mean square variance

\(\tau \) :

Dimensionless time

\(\phi \) :

Porosity, fraction

\({\varGamma }\) :

Standard gamma function

\({\varPhi }\) :

Fluid potential (Pa)

c:

Coke

e:

Effective

f:

Fluid

g:

Gas

o:

Oil

p:

Pore

r:

Reservoir

s:

Rock solid matrix

sf:

Solid-to-fluid interface

w:

Water

0:

Initial

1:

Reservoir

References

  1. Muradov, K.M.; Davies, D.R.: Prediction of temperature distribution in intelligent wells. In: SPE Russian Oil and Gas Technical Conference and Exhibition. Society of Petroleum Engineers (2008)

  2. Muskat, M.: The flow of homogeneous fluids through porous media. Soil. Sci. 46(2), 169 (1938)

    Article  Google Scholar 

  3. Nield, D.A.; Bejan, A.: Convection in Porous Media. Springer, New York (2006)

    MATH  Google Scholar 

  4. Ertekin, T.; Abou-Kassem, J.H.; King, G.R.: Basic Applied Reservoir Simulation. Society of Petroleum Engineers Richardson, TX (2001)

    Google Scholar 

  5. Civan, F.: Porous Media Transport Phenomena. Wiley, Hoboken (2011)

    Book  Google Scholar 

  6. Yamamoto, K.; Iwamura, N.: Flow with convective acceleration through a porous medium. J. Eng. Math. 10, 41–54 (1976)

    Article  MATH  Google Scholar 

  7. Bhat, S.K.; Kovscek, A.R.: Permeability modification of diatomite during hot-fluid injection. J. Pet. Technol. 50, 98–100 (1998)

    Google Scholar 

  8. Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp. Porous Media. 85, 233–258 (2010)

    Article  MathSciNet  Google Scholar 

  9. Civan, F.: Scale effect on porosity and permeability: kinetics, model, and correlation. AIChE J. 47, 271–287 (2001)

    Article  Google Scholar 

  10. Kolodzie S. Jr.: Analysis of pore throat size and use of the Waxman–Smits equation to determine OOIP in Spindle Field, Colorado: SPE-9382-MS. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1980)

  11. Ochi, J.; Vernoux, J.-F.: Permeability decrease in sandstone reservoirs by fluid injection. J. Hydrol. 208, 237–248 (1998)

    Article  Google Scholar 

  12. Pape, H.; Clauser, C.; Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64, 1447–1460 (1999)

    Article  Google Scholar 

  13. Ross, C.; Ikeda, M.; Tang, G.-Q.; Kovscek, A.R.: Alteration of reservoir diatomites by hot water injection. In: SPE Western Regional and Pacific Section AAPG Joint Meeting. Society of Petroleum Engineers (2008)

  14. Vaidya, R.N.; Fogler, H.S.: Formation damage due to colloidally induced fines migration. Colloids Surf. 50, 215–229 (1990)

    Article  Google Scholar 

  15. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: The effects of thermal alterations on formation permeability and porosity. Pet. Sci. Technol. 26, 1282–1302 (2008)

    Article  Google Scholar 

  16. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: Variation of rock and fluid temperature during thermal operation in porous media. Pet. Sci. Technol. 27, 597–611 (2009)

    Article  Google Scholar 

  17. İşcan, A.G.; Kök, M.V.; Bagcı, A.S.: Estimation of permeability and rock mechanical properties of limestone reservoir rocks under stress conditions by strain gauge. J. Pet. Sci. Eng. 53, 13–24 (2006)

    Article  Google Scholar 

  18. Nooruddin, H.A.; Hossain, M.E.: Modified Kozeny-Carmen correlation for enhanced hydraulic flow unit characterization. J. Pet. Sci. Eng. 80, 107–115 (2011)

    Article  Google Scholar 

  19. Caputo, M.: Diffusion of fluids in porous media with memory. Geothermics 28, 2–19 (1998)

    Google Scholar 

  20. Iaffaldano, G.; Caputo, M.; Martino, S.: Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth Syst. Sci. Discuss. 2, 1329–1357 (2005)

    Article  Google Scholar 

  21. Martino, S.; Caputo, M.; Iaffaldano, G.: Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth Syst. Sci. Discuss. 10, 93–100 (2006)

    Article  Google Scholar 

  22. Civan, F.: Temperature effect on advection–diffusion transport involving fines migration and deposition in geological porous media. Article No. 452. In: 2008 IAHR International Groundwater Symposium, Istanbul Turkey (2008)

  23. Civan, F.: Predictability of porosity and permeability alterations by geochemical and geomechanical rock and fluid interactions. In: SPE International Symposium on Formation Damage Control. Society of Petroleum Engineers (2000)

  24. Amaefule, J.O.; Kersey, D.G.; Marshall, D.M.; Powell, J.D.; Valencia, L.E.; Keelan, D.K.: Reservoir description: a practical synergistic engineering and geological approach based on analysis of core data. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1988)

  25. Krumbein, W.C.; Monk, G.D.: Permeability as a function of the size parameters of unconsolidated sand. Trans. AIME. 151, 153–163 (1943)

    Article  Google Scholar 

  26. Pang, Z.; Liu, H.: The study on permeability reduction during steam injection in unconsolidated porous media. J. Pet. Sci. Eng. 106, 77–84 (2013)

    Article  Google Scholar 

  27. Heller, R.; Vermylen, J.; Zoback, M.: Experimental investigation of matrix permeability of gas shales. Am. Assoc. Pet. Geol. Bull. 98, 975–995 (2014)

    Google Scholar 

  28. Liu, S.; Harpalani, S.; Pillalamarry, M.: Laboratory measurement and modeling of coal permeability with continued methane production: part 2-Modeling results. Fuel 94, 117–124 (2012)

    Article  Google Scholar 

  29. Latham, J.-P.; Xiang, J.; Belayneh, M.; Nick, H.M.; Tsang, C.-F.; Blunt, M.J.: Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int. J. Rock Mech. Min. Sci. 57, 100–112 (2013)

    Google Scholar 

  30. Manga, M.; Beresnev, I.; Brodsky, E.E.; Elkhoury, J.E.; Elsworth, D.; Ingebritsen, S.E.; Mays, D.C.; Wang, C.: Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev. Geophys. 50, 1–24 (2012)

    Article  Google Scholar 

  31. Bagci, S.; Kok, M.V.; Turksoy, U.: Determination of formation damage in limestone reservoirs and its effect on production. J. Pet. Sci. Eng. 28, 1–12 (2000)

    Article  Google Scholar 

  32. Schembre, J.M.; Tang, G.; Kovscek, A.R.: Effect of temperature on relative permeability for heavy-oil diatomite reservoirs. In: SPE Western Regional Meeting. Society of Petroleum Engineers (2005)

  33. Pang, Z.-X.; Liu, H.-Q.; Liu, X.-L.: Characteristics of formation damage and variations of reservoir properties during steam injection in heavy oil reservoir. Pet. Sci. Technol. 28, 477–493 (2010)

    Article  Google Scholar 

  34. Sola, B.S.; Rashidi, F.: Experimental study of hot water injection into low-permeability carbonate rocks. Energy Fuels 22, 2353–2361 (2008)

    Article  Google Scholar 

  35. Schembre, J.M.; Kovscek, A.R.: Thermally induced fines mobilization: its relationship to wettability and formation damage. In: SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting. Society of Petroleum Engineers (2004)

  36. Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, New York (1995)

    Book  MATH  Google Scholar 

  37. Amhalhel, G.; Furmanski, P.: Problems of modeling flow and heat transfer in porous media. J. Power Technol. 85, 55 (1997)

    Google Scholar 

  38. Brinkman, H.C.: On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. 1, 81–86 (1949)

    Article  Google Scholar 

  39. Forchheimer, P.H.: Wasserbewegung Durch Boden. Zeitschrift des Vereines Dtsch. Ingenieure 45(50), 1781–1788 (1901)

    Google Scholar 

  40. Lauriat, G.; Prasad, V.: Non-Darcian effects on natural convection in a vertical porous enclosure. Int. J. Heat Mass Transf. 32, 2135–2148 (1989)

    Article  Google Scholar 

  41. Hsu, C.T.; Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33, 1587–1597 (1990)

  42. Bayram, A.: Non-isothermal flow models with mass diffusion for a stationary porous media by employing representative elementary volume. J. Inst. Sci. Technol. Dumlupinar Univ. Üniversitesi Fen Bilim. Enstitüsü Derg. 23, 49–58 (2010)

  43. Batchelor, G.K.; Young, A.D.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  44. Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, Chelmsford (2013)

    MATH  Google Scholar 

  45. Darcy, H.: Les fontaines publiques de la ville de Dijon. Exposition et application á suivre et des formules á employer dans les questions de duistribution d’eau (1856)

  46. Choi, C.Y.; Kulacki, F.A.: Non-Darcian effects on mixed convection in a vertical porous annulus. In: Proceedings of 9th IHTC-Heat Transfer (1993)

  47. Barak, A.Z.: Comments on ‘High velocity flow in porous media’ by Hassanizadeh and Gray. Transp. Porous Media 2, 533–535 (1987)

    Article  Google Scholar 

  48. Nield, D.A.: Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous Media 1, 181–186 (1998)

    MATH  Google Scholar 

  49. Nield, D.A.; Bejan, A.: Heat transfer through a porous medium. In: Convection in Porous Media, pp. 31–46. Springer, Berlin (2013)

  50. Yang, J.; Wang, J.; Bu, S.; Zeng, M.; Wang, Q.; Nakayama, A.: Experimental analysis of forced convective heat transfer in novel structured packed beds of particles. Chem. Eng. Sci. 71, 126–137 (2012)

    Article  Google Scholar 

  51. Alazmi, B.; Vafai, K.: Analysis of variants within the porous media transport models. J. Heat Transf. 122, 303–326 (2000)

    Article  Google Scholar 

  52. Carrillo, L.P.: Convective heat transfer for viscous fluid flow through a metallic packed bed. Interciencia 30, 81 (2005)

    Google Scholar 

  53. Quintard, M.; Whitaker, S.: Theoretical Analysis of Transport in Porous Media. Marcel Dekker, New York (2000)

    Book  MATH  Google Scholar 

  54. Wakao, N.; Kaguei, S.; Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers. Chem. Eng. Sci. 34, 325–336 (1979)

    Article  Google Scholar 

  55. Nield, D.A.: A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Transp. porous media. 95, 581–584 (2012)

    Article  MathSciNet  Google Scholar 

  56. Yang, K.; Vafai, K.: Restrictions on the validity of the thermal conditions at the porous-fluid interface-an exact solution. J. Heat Transf. 133, 112601 (2011)

    Article  Google Scholar 

  57. Yang, K.; Vafai, K.: Analysis of temperature gradient bifurcation in porous media-an exact solution. Int. J. Heat Mass Transf. 53, 4316–4325 (2010)

    Article  MATH  Google Scholar 

  58. Yang, K.; Vafai, K.: Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects-an exact solution. Int. J. Heat Mass Transf. 54, 5286–5297 (2011)

    Article  MATH  Google Scholar 

  59. Hossain, M.E.; Abu-khamsin, S.A.: Development of dimensionless numbers for heat transfer in porous media using a memory concept. J. Porous Media 15, 18 (2012)

    Google Scholar 

  60. Levec, J.; Carbonell, R.G.: Longitudinal and lateral thermal dispersion in packed beds. Part I: theory. AICHE J. 31, 581–590 (1985)

    Google Scholar 

  61. Wong, K.F.; Dybbs, A.: An experimental study of thermal equilibrium in liquid saturated porous media. Int. J. Heat Mass Transf. 19, 234–235 (1976)

    Article  Google Scholar 

  62. Amiri, A.; Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37, 939–954 (1994)

    Article  Google Scholar 

  63. Vadasz, P.: Explicit conditions for local thermal equilibrium in porous media heat conduction. Transp. porous media. 59, 341–355 (2005)

    Article  Google Scholar 

  64. Vadasz, P.: Absence of oscillations and resonance in porous media dual-phase-lagging Fourier heat conduction. J. Heat Transf. 127, 307–314 (2005)

    Article  Google Scholar 

  65. Vadasz, P.: On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium. Int. J. Heat Mass Transf. 50, 4131–4140 (2007)

    Article  MATH  Google Scholar 

  66. Spillette, A.G.: Heat transfer during hot fluid injection into an oil reservoir. J. Can. Pet. Technol. 4(04), 213–218 (1965)

  67. Sauty, J.P.; Gringarten, A.C.; Landel, P.A.: The effect of thermal dispersion on injection of hot water in aquifers. In: Proceedings of the Second Invitational Well Testing Symposium, Berkeley, California, pp. 122–131 (1978)

  68. Bödvarsson, G.S.; Tsang, C.F.: Injection and thermal breakthrough in fractured geothermal reservoirs. J. Geophys. Res. Solid Earth. 87, 1031–1048 (1982)

    Article  Google Scholar 

  69. Mozaffari, S.; Nikookar, M.; Ehsani, M.R.; Sahranavard, L.; Roayaie, E.; Mohammadi, A.H.: Numerical modeling of steam injection in heavy oil reservoirs. Fuel 112, 185–192 (2013)

    Article  Google Scholar 

  70. Falta, R.W.; Pruess, K.; Javandel, I.; Witherspoon, P.A.: Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface: 1. Numerical formulation. Water Resour. Res. 28, 433–449 (1992)

    Article  Google Scholar 

  71. Falta, R.W.; Pruess, K.; Javandel, I.; Witherspoon, P.A.: Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface: 2. Code validation and application. Water Resour. Res. 28, 451–465 (1992)

    Article  Google Scholar 

  72. Hossain, M.E.; Abu-Khamsin, S.A.; Al-Helali, A.-A.: A mathematical model for thermal flooding with equal rock and fluid temperatures. J. Porous Media. 18, 731–744 (2015)

    Article  Google Scholar 

  73. Kocabas, I.: Thermal transients during nonisothermal fluid injection into oil reservoirs. J. Pet. Sci. Eng. 42, 133–144 (2004)

    Article  Google Scholar 

  74. Sauty, J.-P.; Gringarten, A.C.; Fabris, H.; Thiéry, D.; Menjoz, A.; Landel, P.A.: Sensible energy storage in aquifers: 2. field experiments and comparison with theoretical results. Water Resour. Res. 18, 253–265 (1982)

    Article  Google Scholar 

  75. Graf, T.: Simulation of Geothermal Flow in Deep Sedimentary Basins in Alberta. Alberta Energy Resources Conservation Board, Alberta (2009)

    Google Scholar 

  76. Vafai, K.: Handbook of Porous Media. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  77. Hunt, A.; Ewing, R.; Ghanbarian, B.: Percolation Theory for Flow in Porous Media. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  78. Mahdi, R.A.; Mohammed, H.A.; Munisamy, K.M.; Saeid, N.H.: Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)

    Article  Google Scholar 

  79. Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure. Academic Press, London (2012)

    Google Scholar 

  80. Rubin, H.: Heat dispersion effect on thermal convection in a porous medium layer. J. Hydrol. 21, 173–185 (1974)

    Article  Google Scholar 

  81. Ripple, C.D.; James, R.V.; Rubin, J.: Packing-induced radial particle-size segregation: influence on hydrodynamic dispersion and water transfer measurements. Soil Sci. Soc. Am. J. 38, 219–222 (1974)

    Article  Google Scholar 

  82. Tyvand, P.A.: Heat dispersion effect on thermal convection in anisotropic porous media. J. Hydrol. 34, 335–342 (1977)

    Article  Google Scholar 

  83. Planck, M.: The Theory of Heat Radiation. Blakiston, Philadelphia (1906)

    MATH  Google Scholar 

  84. Shah, D.O.: Surface Phenomena in Enhanced Oil Recovery. Springer, Berlin (1981)

    Book  Google Scholar 

  85. Lashgari, H.; Lotfollahi, M.; Delshad, M.; Sepehrnoori, K.; De Rouffignac, E.P.: Steam-surfactant-foam modeling in heavy oil reservoirs. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2014)

  86. Zhao, D.W.; Wang, J.; Gates, I.D.: Thermal recovery strategies for thin heavy oil reservoirs. Fuel 117, 431–441 (2014)

    Article  Google Scholar 

  87. Zhao, D.W.; Gates, I.D.: On hot water flooding strategies for thin heavy oil reservoirs. Fuel 153, 559–568 (2015)

    Article  Google Scholar 

  88. Jensen, T.B.; Sharma, M.P.; Harris, H.G.: A critical evaluation of preliminary design techniques for steam drive projects. J. Pet. Sci. Eng. 5, 67–85 (1990)

    Article  Google Scholar 

  89. Lumley, D.E.; Bee, M.; Jenkins, S.; Wang, Z.: 4-D seismic monitoring of an active steamflood. doi:10.1190/1.1887497 (1995)

  90. Lauwerier, H.A.: The transport of heat in an oil layer caused by the injection of hot fluid. Appl. Sci. Res. Sect. A 5, 145–150 (1955)

    MathSciNet  Google Scholar 

  91. Marx, J.W.; Langenheim, R.H.: Reservoir heating by hot fluid injection. Pet. Trans. AIME. 216, 312–315 (1959)

    Google Scholar 

  92. Ramey Jr., H.J.: Discussion of reservoir heating by hot fluid injection. Trans. AIME 216, 364–365 (1959)

    Google Scholar 

  93. Malofeev, G.E.; Scheinman, A.B.: The calculation of oil recovery from a stratum upon injecting hot water into it. Neft. Khoz. 41, 31–35 (1963)

    Google Scholar 

  94. Rubinshtein, L.I.: The total heat losses in injection of a hot liquid into a stratum. Neft. Gaz. 2, 41 (1959)

    Google Scholar 

  95. Mandl, G.; Volek, C.W.: Heat and mass transport in steam-drive processes. Soc. Pet. Eng. J. 9, 59–79 (1969)

    Article  Google Scholar 

  96. Avdonin, N.A.: Some formulas for calculating the temperature field of a stratum subject to thermal injection. Neft. Gaz. 3, 37–41 (1964)

    Google Scholar 

  97. Avdonin, N.A.: On some formulae for the calculation of the temperature field of a layer under heat injection. Izv. Vuzov. Neft. Gaz. 3, 37–41 (1964)

    Google Scholar 

  98. Prats, M.: The heat efficiency of thermal recovery processes. J. Pet. Technol. 21, 323–332 (1969)

    Article  Google Scholar 

  99. Davies, L.G.; Silberberg, I.H.: A method of predicting oil recovery in a five-spot steamflood. J. Pet. Technol. 20, 1050–1058 (1968)

  100. Buckley, S.E.: Leverett, Mc: Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  101. Ali, S.M.F.: Steam injection theories—a unified approach. In: SPE California Regional Meeting. Society of Petroleum Engineers (1982)

  102. Willman, B.T.; Valleroy, V. V.; Runberc, C.W.: Laboratory studies of oil recovery by steam injection. SPE 2515 (1960)

  103. Myhill, N.A.; Stegemeier, G.L.: Steam-drive correlation and prediction. J. Pet. Technol. 30, 173–182 (1978)

    Article  Google Scholar 

  104. van Lookeren, J.: Calculation methods for linear and radial steam flow in oil reservoirs. Soc. Pet. Eng. J. 23, 427–439 (1983)

    Article  Google Scholar 

  105. Jones, J.: Steam drive model for hand-held programmable calculators. J. Pet. Technol. 33, 1583–1598 (1981)

    Article  Google Scholar 

  106. Jensen, T.B.; Sharma, M.P.; Harris, H.G.: An improved evaluation model for steam-drive projects. J. Pet. Sci. Eng. 5, 309–322 (1991)

    Article  Google Scholar 

  107. Bodvarsson, G.: Thermal problems in the siting of reinjection wells. Geothermics 1, 63–66 (1972)

    Article  Google Scholar 

  108. Woods, A.W.; Fitzgerald, S.D.: The vaporization of a liquid front moving through a hot porous rock. J. Fluid Mech. 251, 563–579 (1993)

    Article  MATH  Google Scholar 

  109. Ziagos, J.P.; Blackwell, D.D.: A model for the transient temperature effects of horizontal fluid flow in geothermal systems. J. Volcanol. Geotherm. Res. 27, 371–397 (1986)

    Article  Google Scholar 

  110. Chen, H.-L.; Sylvester, N.D.: Appraisal of analytical steamflood models. In: SPE California Regional Meeting. Society of Petroleum Engineers (1990)

  111. Miller, M.A.; Leung, W.K.: A simple gravity override model of steamdrive. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1985)

  112. Chandra, S.; Mamora, D.D.: Improved steamflood analytical model. In: SPE International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers (2005)

  113. Shook, G.M.: Predicting thermal breakthrough in heterogeneous media from tracer tests. Geothermics 30, 573–589 (2001)

    Article  Google Scholar 

  114. Stopa, J.; Wojnarowski, P.: Analytical model of cold water front movement in a geothermal reservoir. Geothermics 35, 59–69 (2006)

    Article  Google Scholar 

  115. Mongelli, F.; Pagliarulo, P.: Influence of water recharge on heat transfer in a semi-infinite aquifer. Geothermics 26, 365–378 (1997)

    Article  Google Scholar 

  116. Satman, A.: Solutions of heat, and fluid-flow problems in naturally fractured reservoirs: part 1-heat-flow problems. SPE Prod. Eng. 3, 463–466 (1988)

    Article  Google Scholar 

  117. Ghassemi, A.; Tarasovs, S.; Cheng, A.: Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs. Int. J. Numer. Anal. Methods Geomech. 29, 829–844 (2005)

    Article  MATH  Google Scholar 

  118. Gringarten, A.C.; Witherspoon, P.A.; Ohnishi, Y.: Theory of heat extraction from fractured hot dry rock. J. Geophys. Res. 80, 1120–1124 (1975)

    Article  Google Scholar 

  119. Cheng, A.H.-D.; Ghassemi, A.; Detournay, E.: Integral equation solution of heat extraction from a fracture in hot dry rock. Int. J. Numer. Anal. Methods Geomech. 25, 1327–1338 (2001)

    Article  MATH  Google Scholar 

  120. Kocabas, I.; Horne, R.N.: A new method of forecasting the thermal breakthrough time during reinjection in geothermal reservoirs. In: Proceedings, 15th Workshop on Geothermal Reservoir Engineering (1990)

  121. Tor, B.: Nonisothermal effects in water-injection well tests. SPE Form. Eval. 4, 281–286 (1989)

    Article  Google Scholar 

  122. Jahanbani Ghahfarokhi, A.; Jelmert, T.A.; Kleppe, J.; Ashrafi, M.; Souraki, Y.; Torsaeter, O.: Investigation of the applicability of thermal well test analysis in steam injection wells for Athabasca heavy oil. In: SPE Europec/EAGE Annual Conference. Society of Petroleum Engineers (2012)

  123. Benson, S.M.; Bodvarsson, G.S.: Nonisothermal effects during injection and falloff tests. SPE Form. Eval. 1, 53–63 (1986)

    Article  Google Scholar 

  124. Ambastha, A.K.; Ramey, H.J.: Thermal recovery well test design and interpretation. SPE Form. Eval. 4, 173–180 (1989)

    Article  Google Scholar 

  125. Aeschliman, D.P.; Noble, N.J.; Meldau, R.F.: Thermal efficiency of steam injection test well with insulated tubing. In: Annual Technical Meeting. Petroleum Society of Canada (1983)

  126. Cendejas, F.A.; Rodriguez, J.R.: Heat transfer processes during low or high enthalpy fluid injection into naturally fractured reservoirs. Mich, MX, Gerencia de Proyectos Geotermoelectricos, Morelia (1994)

    Google Scholar 

  127. Ramirez, J.; Samaniego, F.V.; Rivera, J.R.; Rodriguez, F.: Tracer flow in naturally fractured reservoirs. SPE Pap. 25900, 12–14 (1993)

    Google Scholar 

  128. Kocabas, I.; Islam, M.R.: Concentration and temperature transients in heterogeneous porous media: part II: radial transport. J. Pet. Sci. Eng. 26, 221–233 (2000)

    Article  Google Scholar 

  129. Kocabas, I.; Islam, M.R.: Concentration and temperature transients in heterogeneous porous media: part I: linear transport. J. Pet. Sci. Eng. 26, 211–220 (2000)

    Article  Google Scholar 

  130. Dindoruk, D.M.; Dindoruk, B.: Analytical solution of nonisothermal Buckley-Leverett flow including tracers. SPE Reserv. Eval. Eng. 11, 555–564 (2008)

    Article  Google Scholar 

  131. Dindoruk, B.; Dindoruk, D.M.: Analytical and numerical solution of nonisothermal Buckley–Leverett flow including tracers. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2006)

  132. Bai, M.; Roegiers, J.-C.: Modeling of heat flow and solute transport in fractured rock masses. In: 8th ISRM Congress. International Society for Rock Mechanics. International Society for Rock Mechanics (1995)

  133. Lawal, K.A.; Vesovic, V.: Analytic investigation of convection during conduction heating of a heavy-oil reservoir. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2010)

  134. Barends, F.: Complete solution for transient heat transport in porous media, following Lauwerier’s concept. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2010)

  135. Miura, K.; Wang, J.: An analytical model to predict cumulative steam/oil ratio (CSOR) in thermal-recovery SAGD process. J. Can. Pet. Technol. 51, 268–275 (2012)

    Article  Google Scholar 

  136. Miura, K.; Wang, J.: An analytical model to predict cumulative steam oil ratio (CSOR) in thermal recovery SAGD process. In: Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers (2013)

  137. Edmunds, N.; Peterson, J.: A unified model for prediction of CSOR in steam-based bitumen recovery. In: Canadian International Petroleum Conference. Petroleum Society of Canada (2007)

  138. Wei, S.; Lin-Song, C.; Huang, S.; Huang, W.: Steam chamber development and production performance prediction of steam assisted gravity drainage. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2014)

  139. Li, K.-Y.; Yang, S.-Y.; Yeh, H.-D.: An analytical solution for describing the transient temperature distribution in an aquifer thermal energy storage system. Hydrol. Process. 24, 3676–3688 (2010)

    Article  Google Scholar 

  140. Cheppelear, J.E.; Volek, C.W.: The injection of a hot liquid into a porous medium. Soc. Pet. Eng. J. 9, 100–114 (1969)

    Article  Google Scholar 

  141. Baker, P.E.: An experimental study of heat flow in steam flooding. Soc. Pet. Eng. J. 9, 89–99 (1969)

    Article  Google Scholar 

  142. Baker, P.E.: Effect of pressure and rate on steam zone development in steamflooding. Soc. Pet. Eng. J. 13, 274–284 (1973)

    Article  Google Scholar 

  143. Baker, P.E.: Heat wave propagation and losses in thermal oil recovery processes. In: 7th World Petroleum Congress. World Petroleum Congress. Chevron Research Co (1967)

  144. Spillette, A.G.; Nielsen, R.L.: Two-dimensional method for predicting hot waterflood recovery behavior. J. Pet. Technol. 20, 627–638 (1967)

    Article  Google Scholar 

  145. Ferguson, M.A.: Further experimental studies of steam-propane injection to enhance recovery of Morichal oil. http://hdl.handle.net/1969.1/ETD-TAMU-2000-THESIS-F465 (2000)

  146. Goite Marcano, J.G.: Experimental study of Morichal heavy oil recovery using combined steam and propane injection. http://hdl.handle.net/1969.1/ETD-TAMU-1999-THESIS-G66 (1999)

  147. Goite, J.G.; Mamora, D.D.; Ferguson, M.A.: Experimental study of Morichal heavy oil recovery using combined steam and propane injection. In: SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers (2001)

  148. Tinss, J.C.: Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil. http://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-T568 (2001)

  149. Rivero, J.A.: Experimental studies of enhancement of injectivity and in-situ oil upgrading by steam propane injection for the Hamaca oil field. http://hdl.handle.net/1969.1/ETD-TAMU-2002-THESIS-R58 (2003)

  150. Simangunsong, R.: Experimental and analytical modeling studies of steam injection with hydrocarbon additives to enhance recovery of San Ardo heavy oil. http://hdl.handle.net/1969.1/4308 (2006)

  151. Naderi, K.; Babadagli, T.; Coskuner, G.: Bitumen recovery by the steam-over-solvent injection in fractured reservoirs (SOS-FR) method: an experimental study on Grosmont carbonates. Energy Fuels. 27, 6501–6517 (2013)

    Article  Google Scholar 

  152. Hashemi-Kiasari, H.; Hemmati-Sarapardeh, A.; Mighani, S.; Mohammadi, A.H.; Sedaee-Sola, B.: Effect of operational parameters on SAGD performance in a dip heterogeneous fractured reservoir. Fuel 122, 82–93 (2014)

    Article  Google Scholar 

  153. Mohsenzadeh, A.; Escrochi, M.; Afraz, M.V.; Al-wahaibi, Y.M.; Ayatollahi, S.: Experimental investigation of heavy oil recovery from fractured reservoirs by secondary steam-gas assisted gravity drainage. In: SPE Heavy Oil Conference Canada. Society of Petroleum Engineers (2012)

  154. Shafiei, A.; Dusseault, M.B.; Zendehboudi, S.; Chatzis, I.: A new screening tool for evaluation of steamflooding performance in naturally fractured carbonate reservoirs. Fuel 108, 502–514 (2013)

    Article  Google Scholar 

  155. Farzaneh, S.A.; Sohrabi, M.: A review of the status of foam application in enhanced oil recovery. In: EAGE Annual Conference and Exhibition incorporating SPE Europec. Society of Petroleum Engineers (2013)

  156. Ardali, M.; Barrufet, M.; Mamora, D.D.; Qiu, F.: A critical review of hybrid steam/solvent processes for the recovery of heavy oil and bitumen. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2012)

  157. Naderi, K.; Babadagli, T.: Field scale application of the SOS-FR (Steam-Over-Solvent Injection in Fractured Reservoirs) method: optimal operating conditions. In: SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2012)

  158. Moreno-Arciniegas, L.; Babadagli, T.: Optimal application conditions of solvent injection into oil sands to minimize the effect of asphaltene deposition: an experimental investigation. SPE Reserv. Eval. Eng. 17, 530–546 (2014)

    Article  Google Scholar 

  159. Zendehboudi, S.; Rajabzadeh, A.R.; Bahadori, A.; Chatzis, I.; Dusseault, M.B.; Elkamel, A.; Lohi, A.; Fowler, M.: Connectionist model to estimate performance of steam-assisted gravity drainage in fractured and unfractured petroleum reservoirs: enhanced oil recovery implications. Ind. Eng. Chem. Res. 53, 1645–1662 (2014)

    Article  Google Scholar 

  160. Saaid, Md: I.; Mahat, S.Q.A.; Lal, B.; Mutalib, M.I.A.; M. Sabil, K.: Experimental investigation on the effectiveness of 1-butyl-3-methylimidazolium perchlorate ionic liquid as a reducing agent for heavy oil upgrading. Ind. Eng. Chem. Res. 53, 8279–8284 (2014)

  161. Pathak, V.; Babadagli, T.; Edmunds, N.: Experimental investigation of bitumen recovery from fractured carbonates using hot solvents. J. Can. Pet. Technol. 52, 289–295 (2013)

    Article  Google Scholar 

  162. Mohammadpoor, M.; Torabi, F.: An extensive review on the effective sequence of heavy oil recovery. In: SPE heavy oil conference Canada. Society of Petroleum Engineers (2012)

  163. Liu, H.Q.; Wang, J.; Hou, P.C.; Wang, B.K.: Experimental investigation of enhanced oil recovery by thermal foam flooding. In: Advanced Materials Research, pp. 814–819. Trans Tech Publ (2011)

  164. Naderi, K.; Babadagli, T.: Experimental analysis of heavy oil recovery and \(\text{CO}_{2}\) storage by alternate injection of steam and \(\text{ CO }_{2}\) in deep naturally fractured reservoir. In: SPE Heavy Oil Conference Canada. Society of Petroleum Engineers (2012)

  165. Pathak, V.; Babadagli, T., Edmunds, N.R.: Hot solvent injection for heavy oil/bitumen recovery: an experimental investigation. In: Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers (2010)

  166. Tang, G.-Q.; Inouye, A.; Lowry, D.; Lee, V.: Recovery mechanism of steam injection in heavy oil carbonate reservoir. In: SPE Western North American Region Meeting. Society of Petroleum Engineers (2011)

  167. Jia, H.; Yuan, C.; Zhang, Y.; Peng, H.; Zhong, D.; Zhao, J.: Recent progress of high pressure air injection process (HPAI) in light oil reservoir: laboratory investigation and field application. In: SPE Heavy Oil Conference Canada. Society of Petroleum Engineers (2012)

  168. Mukhametshina, A.; Hascakir, B.: Bitumen extraction by expanding solvent-steam assisted gravity drainage (ES-SAGD) with asphaltene solvents and non-solvents. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2014)

  169. Souraki, Y.; Ashrafi, M.; Karimaie, H.; Torsaeter, O.: Experimental investigation and numerical simulation of steam flooding in heavy oil fractured reservoir. In: SPE Western North American Region Meeting. Society of Petroleum Engineers (2011)

  170. Popov, Y.; Spasennykh, M.; Miklashevskiy, D.; Parshin, A.V.; Stenin, V.; Chertenkov, M.; Novikov, S.; Tarelko, N.: Thermal properties of formations from core analysis: evolution in measurement methods, equipment, and experimental data in relation to thermal EOR. In: Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers (2010)

  171. Hirsch, T.; Feldhoff, J.F.; Hennecke, K.; Pitz-Paal, R.: Advancements in the field of direct steam generation in linear solar concentrators-a review. Heat Transf. Eng. 35, 258–271 (2014)

    Article  Google Scholar 

  172. Mohammed, M.; Babadagli, T.: Efficiency of solvent retrieval during steam-over-solvent injection in fractured reservoirs (SOS-FR) method: core scale experimentation. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2013)

  173. Coskuner, G.; Naderi, K.; Babadagli, T.: An enhanced oil recovery technology as a follow up to cold heavy oil production with sand. J. Pet. Sci. Eng. 133, 475–482 (2015)

    Article  Google Scholar 

  174. Zhong, L.; Li, Y.; Sun, Y.; Lu, W.; Qin, F.; Hou, J.; Dong, Z.; Zhao, L.: Investigation on principles of enhanced offshore heavy oil recovery by coinjection of steam with flue gas. In: SPE Enhanced Oil Recovery Conference. Society of Petroleum Engineers (2013)

  175. Ochs, S.O.; Class, H.; Färber, A.; Helmig, R.: Methods for predicting the spreading of steam below the water table during subsurface remediation. Water Resour. Res. 46, 1–16 (2010)

    Article  Google Scholar 

  176. Lamoureux-Var, V.; Kowalewski, I.; Kohler, E.: Forecasting \(\text{ H }_{2}\text{ S }\) generated from steamed oil sands insights into \(\text{ H }_{2}\text{ S }\) generation through experimental investigation. In: AAPG Hedberg Conference. Vail, Colorado (2010)

  177. Ahmadi, M.A.; Zendehboudi, S.; Bahadori, A.; James, L.; Lohi, A.; Elkamel, A.; Chatzis, I.: Recovery rate of vapor extraction in heavy oil reservoirs? Experimental, statistical, and modeling studies. Ind. Eng. Chem. Res. 53, 16091–16106 (2014)

    Article  Google Scholar 

  178. Fayers, F.J.: Some theoretical results concerning the displacement of a viscous oil by a hot fluid in a porous medium. J. Fluid Mech. 13, 65–76 (1962)

    Article  MATH  Google Scholar 

  179. Bodvarsson, G.S.; Benson, S.M.; Witherspoon, P.A.: Theory of the development of geothermal systems charged by vertical faults. J. Geophys. Res. Solid Earth. 87, 9317–9328 (1982)

    Article  Google Scholar 

  180. Wilson, L.A.; Root, P.J.: Cost comparison of reservoir heating using steam or air: SPE-1116-PA. J. Pet. Technol. 18, 233–239 (1966)

    Article  Google Scholar 

  181. Ferrer, J.: A three-phase, two-dimensional compositional thermal simulator for steam injection processes. J. Can. Pet. Technol. 16, 78–90 (1977)

    Article  Google Scholar 

  182. Abou-Kassem, J.H.: Investigation of grid orientation in a two-dimensional, compositional, three-phase steam model. http://hdl.handle.net/1880/22121 (1981)

  183. Ishimoto, K.; Pope, G.A.; Sepchrnoori, K.: An equation-of-state steam simulator. In Situ (United States) 11, 1–37 (1987)

  184. Jordon, J.K.; Rayne, J.R.; Marshall, S.W.: A calculation procedure for estimating the production history during hot water injection in linear reservoirs. In: 20th Technical Conference on Petroleum Production., The Pennsylvania State U., University Park, PA, 9–10 May 1957

  185. Vinsome, P.K.W.: A numerical description of hot-water and steam drives by the finite-difference method. In: Fall Meeting of the Society of Petroleum Engineers of AIME. Society of Petroleum Engineers (1974)

  186. Class, H.; Helmig, R.; Bastian, P.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media: 1. An efficient solution technique. Adv. Water Resour. 25, 533–550 (2002)

    Article  Google Scholar 

  187. Jensen, T.B.; Sharma, M.P.; Harris, H.G.; Whitman, D.L.: Numerical investigations of steam and hot-water flooding in fractured porous media. In: SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1992)

  188. Dreher, K.D.; Kenyon, D.E.; Iwere, F.O.: Heat flow during steam injection into a fractured carbonate reservoir. Paper SPE 14902 presented at the 1986 SPE. In: DOE fifth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, April pp. 20–23 (1986)

  189. Sahuquet, B.C.; Ferrier, J.J.: Steam-drive pilot in a fractured carbonated reservoir: Lacq Superieur field. J. Pet. Technol. 34, 873–880 (1982)

    Article  Google Scholar 

  190. Reis, J.C.: Oil recovery mechanisms in fractured reservoirs during steam injection. In: SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1990)

  191. Sumnu, M.D.; Brigham, W.E.; Aziz, K.; Castanier, L.M.: An experimental and numerical study on steam injection in fractured systems. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers (1996)

  192. Rayleigh, L.: LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. Ser. 6 32, 529–546 (1916)

  193. Karra, P.S.; Aziz, K.: A numerical study of transient natural convection in porous media. In: Proceedings of 17th Annual Conference of Canadian Society of Chemical Engineeres, Ontario (1967)

  194. Sarathi, P.: Thermal numerical simulator for laboratory evaluation of steamflood oil recovery. National Institute for Petroleum and Energy Research, Bartlesville, OK (USA) (1991)

    Book  Google Scholar 

  195. Shutler, N.D.: Numerical, three-phase simulation of the linear steamflood process: SPE-2233-PA. Soc. Pet. Eng. J. 9, 232–246 (1969)

    Article  Google Scholar 

  196. Abdus, S.; Parrish, D.R.: A two-dimensional analysis of reservoir heating by steam injection. Soc. Pet. Eng. J. 11, 185–197 (1971)

    Article  Google Scholar 

  197. Gomaa, E.E.: Correlations for predicting oil recovery by steamflood. J. Pet. Technol. 32, 325–332 (1980)

    Article  Google Scholar 

  198. Abdalla, A.; Coats, K.H.: A three-phase, experimental and numerical simulation study of the steam flood process. In: Fall Meeting of the Society of Petroleum Engineers of AIME. Society of Petroleum Engineers (1971)

  199. Coats, K.H.: Simulation of steamflooding with distillation and solution gas. Soc. Pet. Eng. J. 16, 235–247 (1976)

    Article  Google Scholar 

  200. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: Rock and fluid temperature changes during thermal operation in EOR process. J. Nat. Sci. Sustain. Technol. 2, 347–378 (2007)

    Google Scholar 

  201. Cicek, O.: Numerical simulation of steam displacement of oil in naturally fractured reservoirs using fully implicit compositional formulation: a comparative analysis of the effects of capillary and gravitational forces in matrix/fracture exchange term. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2005)

  202. Cicek, O.: A parametric study of the effects of reservoir and operational properties on the performance of steam displacement of heavy oil in naturally fractured reservoirs. In: SPE International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers (2005)

  203. Wu, K.; Li, X.; Zhai, Y.: The model for predicting stream breakthrough timing during steam drive development of heavy oil reservoirs: SPE-150504-MS. In: SPE Heavy Oil Conference and Exhibition. Society of Petroleum Engineers (2011)

  204. Hossain, M.E.; Mousavizadegan, S.H.; Islam, M.R.: A new porous media diffusivity equation with the inclusion of rock and fluid memories: SPE-114287-MS. Society of Petroleum Engineers (2008)

  205. Hossain, M.E.: Comprehensive modelling of complex petroleum phenomena with an engineering approach. J. Porous Media. 15, 173–186 (2012)

    Article  Google Scholar 

  206. Hossain, M.E.; Abu-Khamsin, S.A.; Al-Helali, A.-A.: Use of the memory concept to investigate the temperature profile during a thermal EOR process: In: SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition. Society of Petroleum Engineers (2011)

  207. Hossain, M.E.; Abu-khamsin, S.A.: Utilization of memory concept to develop heat transfer dimensionless numbers for porous media undergoing thermal flooding with equal rock and fluid temperatures. J. Porous Media 15, 18 (2011)

    Google Scholar 

  208. Yoshida, N.; Zhu, D.; Hill, A.D.: Temperature prediction model for a horizontal well with multiple fractures in a shale reservoir. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2013)

  209. Yoshida, N.; Zhu, D.; Hill, A.D.: Temperature-prediction model for a horizontal well with multiple fractures in a shale reservoir. SPE Prod. Oper. 29, 261–273 (2014)

    Article  Google Scholar 

  210. Irawan, S.; Bathaee, M.: Numerical modeling of flow and temperature distribution in heterogeneous wellbore medium?: SPE-172568-MS. In: SPE Middle East Oil & Gas Show and Conference. Society of Petroleum Engineers (2015)

  211. Peraser, V.; Patil, S.L.; Khataniar, S.; Dandekar, A.Y.; Sonwalkar, V.S.: Evaluation of electromagnetic heating for heavy oil recovery from Alaskan Reservoirs. In: SPE Western Regional Meeting. Society of Petroleum Engineers (2012)

  212. Kovaleva, L.A.; Minnigalimov, R.Z.; Zinnatullin, R.R.: Destruction of water-in-oil emulsions in radio-frequency and microwave electromagnetic fields. Energy Fuels. 25, 3731–3738 (2011)

    Article  Google Scholar 

  213. Kasevich, R.S.: Method and apparatus for in-situ radiofrequency heating. https://www.google.com/patents/US7891421 (2011)

  214. Hakala, J.A.; Stanchina, W.; Soong, Y.; Hedges, S.: Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes. Fuel Process. Technol. 92, 1–12 (2011)

    Article  Google Scholar 

  215. Rassenfoss, S.: Oil sands get wired-seeking more oil. Fewer emissions. J. Pet. Technol. 64, 34–45 (2012)

    Google Scholar 

  216. Banerjee, D.K.; Stalder, J.L.: Process for enhanced production of heavy oil using microwaves. https://www.google.com/patents/US7975763 (2011)

  217. Bogdanov, I.; Torres, J.; Corre, B.: Numerical simulation of electromagnetic driven heavy oil recovery. In: SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers (2012)

  218. Bogdanov, I.; Torres, J.; Kamp, A.M.; Corre, B.: Comparative analysis of electromagnetic methods for heavy oil recovery. In: SPE Heavy Oil Conference and Exhibition. Society of Petroleum Engineers (2011)

  219. Hossan, M.R.; Dutta, P.: Effects of temperature dependent properties in electromagnetic heating. Int. J. Heat Mass Transf. 55, 3412–3422 (2012)

    Article  Google Scholar 

  220. Bientinesi, M.; Petarca, L.; Cerutti, A.; Bandinelli, M.; De Simoni, M.; Manotti, M.; Maddinelli, G.: A radiofrequency/microwave heating method for thermal heavy oil recovery based on a novel tight-shell conceptual design. J. Pet. Sci. Eng. 107, 18–30 (2013)

  221. Farmayan, W.F.; Giles, S.P.; Brignac, J.P.; Munshi, A.W.; Abbasi, F.; Clomburg, L.A.; Anderson, K.G.; Tsai, K.; Siddoway, M.A.: Downhole burner systems and methods for heating subsurface formations. US Patent 7,950,453. 31 May 2011

  222. Kovscek, A.R.: Emerging challenges and potential futures for thermally enhanced oil recovery. J. Pet. Sci. Eng. 98, 130–143 (2012)

    Article  Google Scholar 

  223. Aouizerate, G.; Durlofsky, L.J.; Samier, P.: New models for heater wells in subsurface simulations, with application to the in situ upgrading of oil shale. Comput. Geosci. 16, 519–533 (2012)

    Article  Google Scholar 

  224. Nguyen, S.V.; Vinegar, H.J.: Heating systems for heating subsurface formations. https://www.google.com/patents/US7931086 (2011)

  225. Harris, C.K.; Karanikas, J.M.; Nguyen, S.V.: Parallel heater system for subsurface formations. https://www.google.com/patents/US8042610 (2011)

  226. Hart, A.; Leeke, G.; Greaves, M.; Wood, J.: Down-hole heavy crude oil upgrading by CAPRI: Effect of hydrogen and methane gases upon upgrading and coke formation. Fuel 119, 226–235 (2014)

    Article  Google Scholar 

  227. Remey, E.E. de S.; Giuliani, V.; Harris, C.K.: Insulated conductor heaters with semiconductor layers. https://www.google.com/patents/US8939207 (2015)

  228. Nguyen, S.V.; Bass, R.M.: Induction heaters used to heat subsurface formations. https://www.google.com/patents/US8162059 (2012)

  229. Bottazzi, F.; Repetto, C.; Tita, E.; Maugeri, G.: Downhole electrical heating for heavy oil enhanced recovery: a successful application in offshore Congo. In: IPTC 2013: International Petroleum Technology Conference (2013)

  230. Ozcan, O.: Fractional diffusion in naturally fractured unconventional reservoirs. http://hdl.handle.net/11124/10641 (2014)

  231. Fomin, S.; Chugunov, V.; Hashida, T.: Mathematical modeling of anomalous diffusion in porous media. Fract. Differ. Calc. 1, 1–28 (2011)

    Article  MathSciNet  Google Scholar 

  232. Chang, J.; Yortsos, Y.C.: Pressure transient analysis of fractal reservoirs. SPE Form. Eval. 5, 31–38 (1990)

    Article  Google Scholar 

  233. Dassas, Y.; Duby, P.: Diffusion toward fractal interfaces potentiostatic, galvanostatic, and linear sweep voltammetric techniques. J. Electrochem. Soc. 142, 4175–4180 (1995)

    Article  Google Scholar 

  234. O’Shaughnessy, B.; Procaccia, I.: Analytical solutions for diffusion on fractal objects. Phys. Rev. Lett. 54, 455 (1985)

    Article  Google Scholar 

  235. Hossain, M.E.; Islam, M.R.: A comprehensive material balance equation with the inclusion of memory during rock-fluid deformation. Adv. Sustain. Pet. Eng. Sci. 1, 141–162 (2009)

    Google Scholar 

  236. Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46, (2003)

  237. Kilbas, A.A.; Marzan, S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ. 41, 84–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  238. Daftardar-Gejji, V.; Jafari, H.: Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328, 1026–1033 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  239. Heymans, N.; Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)

    Article  Google Scholar 

  240. Agarwal, R.; Belmekki, M.; Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009, 1–47 (2009)

    MathSciNet  MATH  Google Scholar 

  241. Yuste, S.B.; Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  242. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

  243. Murillo, J.Q.; Yuste, S.B.: On an explicit difference method for fractional diffusion and diffusion-wave equations. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1031–1036. American Society of Mechanical Engineers (2009)

  244. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  245. Hemond, H.F.; Fechner, E.J.: Chemical fate and transport in the environment. Elsevier, Amsterdam (2014)

    Google Scholar 

  246. Weinstein, H.G.; Wheeler, J.A.; Wood, E.G.: Numerical model for thermal processes. Soc. Pet. Eng. J. 17, 65–78 (1977)

    Article  Google Scholar 

  247. Coats, K.H.; George, W.D.; Chu, C.; Marcum, B.E.: Three-dimensional simulation of steamflooding. Soc. Pet. Eng. J. 14, 573–592 (1974)

  248. Coats, K.H.: A highly implicit steamflood model. Soc. Pet. Eng. J. 18, 369–383 (1978)

  249. Rubin, B.; Buchanan, W.L.: A general purpose thermal model. Soc. Pet. Eng. J. 25, 202–214 (1985)

    Article  Google Scholar 

  250. Rousset, M.: Reduced-order modeling for thermal simulation. Dissertation, Stanford University (2010)

  251. App, J.F.: Field cases: Nonisothermal behavior due to Joule-Thomson and transient fluid expansion/compression effects. In: SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 4–7 Oct (2009)

  252. Warren, J.E.; Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3, 245–255 (1963)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support provided via King Abdulaziz City for Science and Technology (KACST), through the Science and Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), for funding this work through project No. 11-OIL1661-04, as part of the National Science, Technology and Innovation Plan (NSTIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enamul Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obembe, A.D., Abu-Khamsin, S.A. & Hossain, M.E. A Review of Modeling Thermal Displacement Processes in Porous Media. Arab J Sci Eng 41, 4719–4741 (2016). https://doi.org/10.1007/s13369-016-2265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2265-5

Keywords

Navigation