Skip to main content
Log in

X-FEM Modeling of Multizone Hydraulic Fracturing Treatments Within Saturated Porous Media

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In this paper, a fully coupled hydro-mechanical model is presented for the study of multizone hydraulic fracturing. The momentum balance equation of the bulk together with the mass balance and momentum balance equation of the fluid phase are employed in order to derive the hydro-mechanical coupled system of governing equations of the porous media known as the \(({\mathbf{u}} - p)\) formulation. The hydro-fracture inflow is modeled based on the Darcy law, where the fracture permeability is determined by using the cubic law. Provisions are made for the plausible closure as well as the frictional resistance of the fracture edges in the solid phase by means of Kuhn–Tucker inequalities embedded in an X-FEM penalty method. In addition, for the fluid phase, the zero leak-off constrain is imposed through the application of the large time increment-based contact algorithm in the case of crack closure. The cohesive crack model is employed to account for the nonlinear fracturing process at the hydro-fracture tips. Multiple crack growth patterns are determined by means of energy based cohesive stress functions. Based on the X-FEM, the strong discontinuities in the displacement field due to fracture opening as well as the weak discontinuities within the pressure field due to leak-off flow are incorporated by using the Heaviside and modified level-set enrichment functions, respectively. A consistent computational algorithm is proposed for the determination of the fracturing fluid flow distribution across the existing perforations. Finally, several numerical examples are presented to demonstrate the robustness of the proposed X-FEM framework in the study of multizone hydraulic fracturing treatments through saturated porous media. The results appear to accord with the field observations reporting numerous failed attempts of multistage multizone fracturing treatments, which provide a great insight into the complexities encountered in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\({\mathbf{b}}\) :

Gravitational acceleration force

\(c_{f}\) :

Coulomb’s cohesion

\({\mathbf{D}}\) :

Hook’s elastic tensor

\({\mathbf{D}}^{{\,{\text{cont}}}}\) :

Contact constitutive matrix

\({\text{d}}\lambda\) :

Sliding increment

\(E\) :

Modulus of elasticity

\(F_{f}\) :

Coulomb’s yield surface

\(\varvec{f}\) :

Force vector

\(f_{c}\) :

Aperture modification factor

\(g\) :

Gap function

\(g\) :

Effective crack opening

\({\mathbf{H}}\) :

Permeability matrix

\({\mathcal{H}}\) :

Heaviside enrichment function

\(h\) :

Half true fracture opening

\({\mathbf{J}}\) :

Jacobian matrix

\({\mathbf{K}}\) :

Stiffness matrix

\(K_{f} ,K_{s}\) :

Compressibility coefficient

\(\varvec{k}_{f}\) :

Intrinsic permeability

\(k_{{f_{d} }}\) :

Fracture intristic permeability

\({\ell }\) :

Crack length

\({\mathbf{m}}\) :

Tangential unit vector

\({\mathbf{N}}\) :

Shape function

\({\mathbf{n}}\) :

Normal unit vector

\(\mathcal{P},p\) :

Fluid pressure

\({\mathbf{Q}}\) :

Coupling matrix

\(\mathcal{Q}\) :

Compressibility coefficient

\(\varvec{q}\) :

Discharge vector

\(\bar{q}_{d}\) :

Leak-off flow

\({\mathbf{R}}\) :

Viscous drag force

\({\mathbf{S}}\) :

Compressibility matrix

\(S_{c}\) :

Relative contact surface

t :

Time

t :

Traction

\({\mathbf{t}}_{\text{cont}}\) :

Contact tractions

\({\mathbf{t}}_{\text{cohs}}\) :

Cohesive tractions

\({\mathbf{u}}\) :

Displacement vector

\({\dot{\mathbf{w}}}\) :

Fluid-phase velocity vector

w :

Hydraulic fracture aperture

w M :

True fracture opening

α :

Biot’s coefficient

β :

Displacement coupling coefficient

χ :

Modification factor

δΠ:

Variational form of potential

\({\varvec{\upvarepsilon}}\) :

Strain tensor

ϕ :

Fracture potential function

φ :

Signed distance function

Γ :

Domain boundary

Γ d :

Internal discontinuity

γ :

Crack growth direction

κ :

Witherspoon’s modification factor

μ :

Friction coefficient

μ f :

Fluid viscosity

Ω:

Domain

\(\theta ,\bar{\theta }\) :

FDM parameters

\(\varvec{\sigma}\) :

Cauchy Stress tensor

ρ :

Bulk density

ρ f :

Fluid density

\({\varvec{\Psi}}\) :

Residual force vector

ψ :

Modified enrichment function

References

  • Ahmed U, Thompson T, Kelkar S, Veghte R, Hathaway S (1984) Perforation placement optimization: a modified hydraulic fracturing technique. In: SPE Unconventional Gas Recovery Symposium. Society of Petroleum Engineers

  • Azadi H, Khoei AR (2011) Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing. Int J Numer Methods Eng 85:1017–1048

    Article  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  Google Scholar 

  • Bi J, Zhou X (2017) A novel numerical algorithm for simulation of initiation, propagation and coalescence of flaws subject to internal fluid pressure and vertical stress in the framework of general particle dynamics. Rock Mech Rock Eng 50:1833–1849

    Article  Google Scholar 

  • Biot M (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23:91–96

    Google Scholar 

  • Bobet A, Einstein HH (1998) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92:221–252

    Article  Google Scholar 

  • Boone TJ, Ingraffea AR (1990) A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int J Numer Anal Methods Geomech 14:27–47

    Article  Google Scholar 

  • Budyn E, Zi G, Moës N, Belytschko T (2004) A method for multiple crack growth in brittle materials without remeshing. Int J Numer Methods 61:1741–1770

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    Article  Google Scholar 

  • Cammarata G, Fidelibus C, Cravero M, Barla G (2007) The hydro-mechanically coupled response of rock fractures. Rock Mech Rock Eng 40:41–61

    Article  Google Scholar 

  • Chen Z (2013) An ABAQUS implementation of the XFEM for hydraulic fracture problems. In: ISRM international conference for effective and sustainable hydraulic fracturing. International Society for Rock Mechanics

  • Cornet FH, Li L, Hulin JP, Ippolito I, Kurowski P (2003) The hydromechanical behaviour of a fracture: an in situ experimental case study. Int J Rock Mech Min Sci 40:1257–1270

    Article  Google Scholar 

  • Coussy O (2004) Poromechanics. Wiley, Hoboken

    Google Scholar 

  • De Borst R, Réthoré J, Abellan MA (2006) A numerical approach for arbitrary cracks in a fluid-saturated medium. Arch Appl Mech 75:595–606

    Article  Google Scholar 

  • Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45

    Article  Google Scholar 

  • Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. In: Hudson JA (ed) Comprehensive rock engineering: principles, practice and projects, vol 2. Pergamon Press, Oxford, UK, pp 113–171

    Google Scholar 

  • Dong C, De Pater C (2001) Numerical implementation of displacement discontinuity method and its application in hydraulic fracturing. Comput Methods Appl Mech Eng 191:745–760

    Article  Google Scholar 

  • Fu P, Johnson SM, Carrigan CR (2013) An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. Int J Numer Anal Methods Geomech 37:2278–2300

    Article  Google Scholar 

  • Geertsma J, De Klerk F (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Petrol 21:1571–1581

    Google Scholar 

  • Glowinski R, Lawton W, Ravachol M, Tenenbaum E (1990) Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. In: Computing methods in applied sciences and engineering, pp. 55–120

  • Gordeliy E, Peirce A (2013) Coupling schemes for modeling hydraulic fracture propagation using the XFEM. Comput Methods Appl Mech Eng 253:305–322

    Article  Google Scholar 

  • Hirmand M, Vahab M, Khoei AR (2015) An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method. Finite Elem Anal Des 107:28–43

    Article  Google Scholar 

  • Jaffard S (1992) Wavelet methods for fast resolution of elliptic problems. Siam J Numer Anal 29:965–986

    Article  Google Scholar 

  • Keshavarzi R, Mohammadi S (2012) A new approach for numerical modeling of hydraulic fracture propagation in naturally fractured reservoirs. In: SPE/EAGE European unconventional resources conference and exhibition-from potential to production

  • Khoei AR (2014) Extended finite element method: theory and applications. Wiley, Hoboken

    Google Scholar 

  • Khoei AR, Vahab M (2014) A numerical contact algorithm in saturated porous media with the extended finite element method. Comput Mech 54:1089–1110

    Article  Google Scholar 

  • Khoei AR, Vahab M, Haghighat E, Moallemi S (2014) A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique. Int J Fract 188:79–108

    Article  Google Scholar 

  • Khoei AR, Hirmand M, Vahab M, Bazargan M (2015a) An enriched FEM technique for modeling hydraulically-driven cohesive fracture propagation in impermeable media with frictional natural faults; Numerical and experimental investigations. Int J Numer Methods Eng 104:439–468

    Article  Google Scholar 

  • Khoei AR, Vahab M, Ehsani H, Rafieerad M (2015b) X-FEM modeling of large plasticity deformation; a convergence study on various blending strategies for weak discontinuities. Euro J Comput Mech 24:79–106

    Article  Google Scholar 

  • Khoei AR, Vahab M, Hirmand M (2016) Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique. Int J Fract 197:1–24

    Article  Google Scholar 

  • Khoei AR, Vahab M, Hirmand M (2018) An enriched–FEM technique for numerical simulation of interacting discontinuities in naturally fractured porous media. Comput Methods Appl Mech Eng 331:197–231

    Article  Google Scholar 

  • Li S, Ghosh S (2006a) Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials. Int J Numer Methods Eng 65:1028–1067

    Article  Google Scholar 

  • Li S, Ghosh S (2006b) Multiple cohesive crack growth in brittle materials by the extended Voronoi cell finite element model. Int J Fract 141:373–393

    Article  Google Scholar 

  • Liu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76:1489–1512

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46:131–150

    Article  Google Scholar 

  • Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  Google Scholar 

  • Mohammadnejad T, Khoei AR (2013a) An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem Anal Des 73:77–95

    Article  Google Scholar 

  • Mohammadnejad T, Khoei AR (2013b) Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method. Int J Numer Anal Methods Geomech 37:1247–1279

    Article  Google Scholar 

  • Nemat-Nasser S, Keer L, Parihar K (1978) Unstable growth of thermally induced interacting cracks in brittle solids. Int J Solids Struct 14:409–430

    Article  Google Scholar 

  • Nguyen TS, Selvadurai APS (1998) A model for coupled mechanical and hydraulic behaviour of a rock joint. Int J Numer Anal Methods Geomech 22:29–48

    Article  Google Scholar 

  • Ooi E, Yang Z (2009) Modelling multiple cohesive crack propagation using a finite element–scaled boundary finite element coupled method. Eng Anal Bound Elem 33:915–929

    Article  Google Scholar 

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  Google Scholar 

  • Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2008) A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Eng Fract Mech 75:4740–4758

    Article  Google Scholar 

  • Réthoré J, de Borst R, Abellan MA (2007) A two-scale approach for fluid flow in fractured porous media. Int J Numer Methods Eng 71:780–800

    Article  Google Scholar 

  • Salimzadeh S, Khalili N (2015a) Fully coupled XFEM model for flow and deformation in fractured porous media with explicit fracture flow. Int J Geomech 16:04015091

    Article  Google Scholar 

  • Salimzadeh S, Khalili N (2015b) A three-phase XFEM model for hydraulic fracturing with cohesive crack propagation. Comput Geotech 69:82–92

    Article  Google Scholar 

  • Samuelson M, Stefanski J, Downie R (2012) Field development study: channel fracturing achieves both operational and productivity goals in the barnett shale. In: SPE Americas unconventional resources conference, Pittsburgh, Pennsylvania, USA, pp 5–7

  • Souley M, Lopez P, Boulon M, Thoraval A (2015) Experimental hydromechanical characterization and numerical modelling of a fractured and porous sandstone. Rock Mech Rock Eng 48:1143–1161

    Article  Google Scholar 

  • Spence D, Sharp P (1985) Self-similar solutions for elastohydrodynamic cavity flow. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. The Royal Society, pp 289–313

  • Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. ComputMethodsAppl Mech Eng 190:6183–6200

    Google Scholar 

  • Taleghani AD (2011) Modeling simultaneous growth of multi-branch hydraulic fractures. In: 45th US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Wang H (2015) Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method. J Petrol Sci Eng 135:127–140

    Article  Google Scholar 

  • Wang W, Taleghani AD (2014) Simulating multizone fracturing in vertical wells. J Energy Resour Technol 136:042902

    Article  Google Scholar 

  • Watanabe N, Wang W, Taron J, Görke U, Kolditz O (2012) Lower-dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media. Int J Numer Methods Eng 90:1010–1034

    Google Scholar 

  • Witherspoon PA, Wang J, Iwai K, Gale J (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024

    Article  Google Scholar 

  • Wu K, Olson JE (2015) Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells. SPE J 21:1–9

    Google Scholar 

  • Xu XP, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Model Simul Mater Sci Eng 1(2):111–132

    Article  Google Scholar 

  • Yao Y (2012) Linear elastic and cohesive fracture analysis to model hydraulic fracture in brittle and ductile rocks. Rock Mech Rock Eng 45:375–387

    Article  Google Scholar 

  • Zhang Z, Ghassemi A (2011) Simulation of hydraulic fracture propagation near a natural fracture using virtual multidimensional internal bonds. Int J Numer Anal Methods Geomech 35:480–495

    Article  Google Scholar 

  • Zi G, Song J-H, Budyn E, Lee S-H, Belytschko T (2004) A method for growing multiple cracks without remeshing and its application to fatigue crack growth. Model Simul Mater Sci Eng 12:901–915

    Article  Google Scholar 

  • Zienkiewicz OC, Chan A, Pastor M, Schrefler B, Shiomi T (1999) Computational geomechanics. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vahab.

Appendix

Appendix

The Jacobian matrix appearing in Newton–Raphson solution of the fully coupled nonlinear equation system (40) is denoted by

$${\mathbf{J}} = \left[ {\begin{array}{*{20}c} {{\mathbf{J}}_{uu} } & {{\mathbf{J}}_{{u\tilde{u}}} } & {{\mathbf{J}}_{up} } & {{\mathbf{J}}_{{u\tilde{p}}} } \\ {{\mathbf{J}}_{{\tilde{u}u}} } & {{\mathbf{J}}_{{\tilde{u}\tilde{u}}} } & {{\mathbf{J}}_{{\tilde{u}p}} } & {{\mathbf{J}}_{{\tilde{u}\tilde{p}}} } \\ {{\mathbf{J}}_{pu} } & {{\mathbf{J}}_{{p\tilde{u}}} } & {{\mathbf{J}}_{pp} } & {{\mathbf{J}}_{{p\tilde{p}}} } \\ {{\mathbf{J}}_{{\tilde{p}u}} } & {{\mathbf{J}}_{{\tilde{p}\tilde{u}}} } & {{\mathbf{J}}_{{\tilde{p}p}} } & {{\mathbf{J}}_{pp} } \\ \end{array} } \right],$$
(45)

in which

$$\begin{aligned} &{\mathbf{J}}_{uu} = \frac{{\partial {\varvec{\Psi}}^{u} }}{{\partial {\mathbf{U}}}} = {\mathbf{K}}_{uu} ,\quad {\mathbf{J}}_{{u\tilde{u}}} = \frac{{\partial {\varvec{\Psi}}^{u} }}{{\partial {\tilde{\mathbf{U}}}}} = {\mathbf{K}}_{{u\tilde{u}}} , \hfill \\ &{\mathbf{J}}_{up} = \frac{{\partial {\varvec{\Psi}}^{u} }}{{\partial {\mathbf{P}}}} = - {\mathbf{Q}}_{up} ,\quad {\mathbf{J}}_{{u\tilde{p}}} = \frac{{\partial {\varvec{\Psi}}^{u} }}{{\partial {\tilde{\mathbf{P}}}}} = - {\mathbf{Q}}_{{u\tilde{p}}} , \hfill \\ &{\mathbf{J}}_{{\tilde{u}u}} = \frac{{\partial {\varvec{\Psi}}^{{\tilde{u}}} }}{{\partial {\mathbf{U}}}} = {\mathbf{K}}_{{\tilde{u}u}} ,\quad {\mathbf{J}}_{{\tilde{u}\tilde{u}}} = \frac{{\partial {\varvec{\Psi}}^{{\tilde{u}}} }}{{\partial {\tilde{\mathbf{U}}}}} = {\mathbf{K}}_{{\tilde{u}\tilde{u}}} + {\mathbf{K}}_{\text{Solid}}^{\text{cont}} + {\mathbf{K}}^{\text{cohs}} - \frac{{\partial \varvec{f}^{\text{intf}} }}{{\partial {\tilde{\mathbf{U}}}}}, \hfill \\ &{\mathbf{J}}_{{\tilde{u}p}} = \frac{{\partial {\varvec{\Psi}}^{{\tilde{u}}} }}{{\partial {\mathbf{P}}}} = - {\mathbf{Q}}_{{\tilde{u}p}} - \frac{{\partial \varvec{f}^{\text{intf}} }}{{\partial {\mathbf{P}}}},\quad {\mathbf{J}}_{{\tilde{u}\tilde{p}}} = \frac{{\partial {\varvec{\Psi}}^{{\tilde{u}}} }}{{\partial {\tilde{\mathbf{P}}}}} = - {\mathbf{Q}}_{{\tilde{u}\tilde{p}}} - \frac{{\partial \varvec{f}^{\text{intf}} }}{{\partial {\tilde{\mathbf{P}}}}}, \hfill \\ &{\mathbf{J}}_{pu} = \frac{{\partial {\varvec{\Psi}}^{p} }}{{\partial {\mathbf{U}}}} = \frac{\theta }{\Delta t}{\mathbf{Q}}_{up}^{T} - \frac{{\partial \varvec{q}_{p}^{\text{intf}} }}{{\partial {\mathbf{U}}}},\quad {\mathbf{J}}_{{p\tilde{u}}} = \frac{{\partial {\varvec{\Psi}}^{p} }}{{\partial {\tilde{\mathbf{U}}}}} = \frac{\theta }{\Delta t}{\mathbf{Q}}_{{\tilde{u}p}}^{T} - \frac{{\partial \varvec{q}_{p}^{\text{intf}} }}{{\partial {\tilde{\mathbf{U}}}}} \hfill \\ &{\mathbf{J}}_{pp} = \frac{{\partial {\varvec{\Psi}}^{p} }}{{\partial {\mathbf{P}}}} = {\mathbf{H}}_{pp} + \frac{1}{{\bar{\theta }\Delta t}}{\mathbf{S}}_{pp} - \frac{{\partial \varvec{q}_{p}^{\text{intf}} }}{{\partial {\mathbf{P}}}},\quad {\mathbf{J}}_{{p\tilde{p}}} = \frac{{\partial {\varvec{\Psi}}^{p} }}{{\partial {\tilde{\mathbf{P}}}}} = {\mathbf{H}}_{{p\tilde{p}}} + \frac{1}{{\bar{\theta }\Delta t}}{\mathbf{S}}_{{p\tilde{p}}} - \frac{{\partial \varvec{q}_{p}^{\text{intf}} }}{{\partial {\tilde{\mathbf{P}}}}} \hfill \\ &{\mathbf{J}}_{{\tilde{p}u}} = \frac{{\partial {\varvec{\Psi}}^{{\tilde{p}}} }}{{\partial {\mathbf{U}}}} = \frac{\theta }{\Delta t}{\mathbf{Q}}_{{u\tilde{p}}}^{T} - \frac{{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} }}{{\partial {\mathbf{U}}}},\quad {\mathbf{J}}_{{\tilde{p}\tilde{u}}} = \frac{{\partial {\varvec{\Psi}}^{{\tilde{p}}} }}{{\partial {\tilde{\mathbf{U}}}}} = \frac{\theta }{\Delta t}{\mathbf{Q}}_{{\tilde{u}\tilde{p}}}^{T} - \frac{{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} }}{{\partial {\tilde{\mathbf{U}}}}} \hfill \\ &{\mathbf{J}}_{{\tilde{p}p}} = \frac{{\partial {\varvec{\Psi}}^{{\tilde{p}}} }}{{\partial {\mathbf{P}}}} = {\mathbf{H}}_{{\tilde{p}p}} + \frac{1}{{\bar{\theta }\Delta t}}{\mathbf{S}}_{{\tilde{p}p}} - \frac{{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} }}{{\partial {\mathbf{P}}}},\quad {\mathbf{J}}_{{\tilde{p}\tilde{p}}} = \frac{{\partial {\varvec{\Psi}}^{{\tilde{p}}} }}{{\partial {\tilde{\mathbf{P}}}}} = {\mathbf{H}}_{{\tilde{p}\tilde{p}}} + \frac{1}{{\bar{\theta }\Delta t}}{\mathbf{S}}_{{\tilde{p}\tilde{p}}} - \frac{{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} }}{{\partial {\tilde{\mathbf{P}}}}} + {\mathbf{K}}_{\text{fluid}}^{\text{cont}} . \hfill \\ \end{aligned}$$
(46)

The matrixes \({\mathbf{K}}\), \({\mathbf{Q}}\), \({\mathbf{H}}\), and \({\mathbf{S}}\) are defined through relation (34). The contact stiffness matrix associated with the solid and fluid phases \({\mathbf{K}}_{\text{solid}}^{\text{cont}}\) and \({\mathbf{K}}_{\text{fluid}}^{\text{cont}}\) are, respectively, defined as

$$\begin{aligned} {\mathbf{K}}_{\text{solid}}^{\text{cont}} &= \int_{{\Gamma_{c} }} {({\mathbf{N}}_{u}^{\text{std}} )^{\text{T}} {\mathbf{D}}^{\text{cont}} {\mathbf{N}}_{u}^{\text{std}} } {\text{d}}\Gamma , \hfill \\ {\mathbf{K}}_{\text{fluid}}^{\text{cont}} &= \int_{{\Gamma_{c} }} {({\mathbf{N}}_{p}^{\text{std}} )^{\text{T}} {{\bar{\varvec{k}}_{f} } \mathord{\left/ {\vphantom {{\bar{\varvec{k}}_{f} } {\mu_{f} }}} \right. \kern-0pt} {\mu_{f} }}{\mathbf{\mathcal{N}}}_{{\Gamma_{d} }} {\mathbf{N}}_{p}^{\text{std}} } {\text{d}}\Gamma , \hfill \\ \end{aligned}$$
(47)

where \({\mathbf{\mathcal{N}}}_{{\Gamma_{d} }} = {\mathbf{n}}_{{\Gamma_{d} }} ({\mathbf{n}}_{{\Gamma_{d} }} )^{\text{T}}\). Moreover, the stiffness matrix \({\mathbf{K}}^{\text{cohs}}\) corresponding to the cohesive forces is expressed as,

$${\mathbf{K}}^{\text{cohs}} = \int_{{\Gamma_{d} }} {({\mathbf{N}}_{u}^{\text{std}} )^{\text{T}} {\mathbf{D}}^{\text{cohs}} \,{\mathbf{N}}_{u}^{\text{std}} } {\text{d}}\Gamma$$
(48)

where \({\mathbf{D}}^{\text{coh}} = \partial {\mathbf{t}}_{\text{coh}} /\partial \left[\kern-0.15em\left[ {\mathbf{u}} \right]\kern-0.15em\right]\).It is beneficial to symmetrize the non-symmetrical Jacobian matrix deduced in Newton–Raphson solution algorithm in favor of core storage and performance speed. The partial derivatives of the interfacial force vector \(\varvec{f}^{\text{intf}}\) can be evaluated as

$$\begin{aligned} \frac{{\partial \varvec{f}^{\text{intf}} }}{{\partial {\mathbf{P}}}} = {\mathbf{Q}}_{{\tilde{u}p}}^{\text{intf}} = \int_{{\Gamma_{d} }} {{\mathbf{(N}}_{u}^{\text{std}} )^{T} {\mathbf{n}}_{{\Gamma_{d} }} {\mathbf{N}}_{p}^{\text{std}} {\text{d}}\Gamma } , \hfill \\ \frac{{\partial \varvec{f}^{\text{intf}} }}{{\partial {\tilde{\mathbf{P}}}}} = {\mathbf{Q}}_{{\tilde{u}\tilde{p}}}^{\text{intf}} = \int_{{\Gamma_{d} }} {{\mathbf{(N}}_{u}^{\text{std}} )^{T} {\mathbf{n}}_{{\Gamma_{d} }} {\mathbf{N}}_{p}^{{\text{ridge}}} {\text{d}}\Gamma } . \hfill \\ \end{aligned}$$
(49)

The terms arising from the partial derivatives of the interfacial flux vector \(\varvec{q}^{\text{intf}}\) with respect to \({\mathbf{U}}\), i.e., \({{\partial \varvec{q}_{p}^{\text{intf}} } \mathord{\left/ {\vphantom {{\partial \varvec{q}_{p}^{\text{intf}} } {\partial {\mathbf{U}}}}} \right. \kern-0pt} {\partial {\mathbf{U}}}}\) and \({{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} } \mathord{\left/ {\vphantom {{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} } {\partial {\mathbf{U}}}}} \right. \kern-0pt} {\partial {\mathbf{U}}}}\), are omitted from the Jacobian matrix in order to retain the symmetry of the Jacobian matrix with respect to the above mentioned components. Meanwhile, the partial derivatives with respect to \({\tilde{\mathbf{U}}}\), i.e., \({{\partial \varvec{q}_{p}^{\text{int}} } \mathord{\left/ {\vphantom {{\partial \varvec{q}_{p}^{\text{int}} } {\partial {\tilde{\mathbf{U}}}}}} \right. \kern-0pt} {\partial {\tilde{\mathbf{U}}}}}\) and \({{\partial \varvec{q}_{{\tilde{p}}}^{\text{int}} } \mathord{\left/ {\vphantom {{\partial \varvec{q}_{{\tilde{p}}}^{\text{int}} } {\partial {\tilde{\mathbf{U}}}}}} \right. \kern-0pt} {\partial {\tilde{\mathbf{U}}}}}\), are approximated by

$$\frac{{\partial \varvec{q}_{p}^{\text{intf}} }}{{\partial {\tilde{\mathbf{U}}}}} \simeq - \frac{\theta }{\Delta t}\left( {{\mathbf{Q}}_{{\tilde{u}p}}^{\text{intf}} } \right)^{\text{T}} ,\quad \frac{{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} }}{{\partial {\tilde{\mathbf{U}}}}} \simeq - \frac{\theta }{\Delta t}\left( {{\mathbf{Q}}_{{\tilde{u}\tilde{p}}}^{\text{intf}} } \right)^{\text{T}} .$$
(50)

The partial derivatives of the internal flux vector \(\varvec{q}^{\text{intf}}\) with respect to \({\mathbf{P}}\) and \({\tilde{\mathbf{P}}}\) are computed as

$$\begin{aligned} \frac{{\partial \varvec{q}_{p}^{\text{intf}} }}{{\partial {\mathbf{P}}}} = {\mathbf{H}}_{pp}^{\text{intf}} + \frac{1}{\theta \Delta t}{\mathbf{S}}_{pp}^{\text{intf}} ,\quad \frac{{\partial \varvec{q}_{p}^{\text{intf}} }}{{\partial {\tilde{\mathbf{P}}}}} = {\mathbf{H}}_{{p\tilde{p}}}^{\text{intf}} + \frac{1}{\theta \Delta t}{\mathbf{S}}_{{p\tilde{p}}}^{\text{intf}} , \hfill \\ \frac{{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} }}{{\partial {\mathbf{P}}}} = {\mathbf{H}}_{{\tilde{p}p}}^{\text{intf}} + \frac{1}{\theta \Delta t}{\mathbf{S}}_{{\tilde{p}p}}^{\text{intf}} ,\quad \frac{{\partial \varvec{q}_{{\tilde{p}}}^{\text{intf}} }}{{\partial {\tilde{\mathbf{P}}}}} = {\mathbf{H}}_{{\tilde{p}\tilde{p}}}^{\text{intf}} + \frac{1}{\theta \Delta t}{\mathbf{S}}_{{\tilde{p}\tilde{p}}}^{\text{intf}} , \hfill \\ \end{aligned}$$
(51)

in which

$${\mathbf{H}}_{\delta \gamma }^{\text{intf}} = - \int_{{\Gamma_{d} }} {(\nabla {\mathbf{N}}_{p}^{ \, \delta } )^{\text{T}} k_{d} {\mathbf{\mathcal{M}}}_{d} \, (\nabla {\mathbf{N}}_{p}^{ \, \gamma } ) \, w{\text{d}}\Gamma }$$
(52)
$${\mathbf{S}}_{\delta \gamma }^{\text{intf}} = - \int_{{\Gamma_{d} }} {({\mathbf{N}}_{p}^{ \, \delta } )^{\text{T}} \frac{{(1 - S_{c} )}}{{K_{f} }}{\mathbf{N}}_{p}^{ \, \gamma } w\,{\text{d}}\Gamma }$$

where \((\delta ,\gamma ) \in \{ {\text{std , }}\,\text{ridge}\} \equiv \{ p,\,\tilde{p}\}\). Final step is carried out by multiplying the first two rows of the Jacobian matrix by the scaler factor − θt. Provided that the contributions related to contact in the solid and fluid phases are symmetric, the symmetrized approximation of the Jacobian matrix \({\mathbf{J}}\) is expressed as

$${\mathbf{J}} \simeq \left[ {\begin{array}{*{20}c} { - \frac{\theta }{\Delta t}({\mathbf{K}}_{uu} )} \hfill & { - \frac{\theta }{\Delta t}({\mathbf{K}}_{{u\tilde{u}}} )} \hfill \\ { - \frac{\theta }{\Delta t}({\mathbf{K}}_{{\tilde{u}u}} )} \hfill & { - \frac{\theta }{\Delta t}({\mathbf{K}}_{{\tilde{u}\tilde{u}}} + {\mathbf{K}}^{\text{cont}} + {\mathbf{K}}^{\text{cohs}} )} \hfill \\ {\frac{\theta }{\Delta t}({\mathbf{Q}}_{up}^{\rm T} )} \hfill & {\frac{\theta }{\Delta t}({\mathbf{Q}}_{{\tilde{u}p}}^{\rm T} + {\mathbf{Q}}_{{\tilde{u}p}}^{\text{intf}} )} \hfill \\ {\frac{\theta }{\Delta t}({\mathbf{Q}}_{{u\tilde{p}}}^{\rm T} )} \hfill & {\frac{\theta }{\Delta t}({\mathbf{Q}}_{{\tilde{u}\tilde{p}}}^{\rm T} + {\mathbf{Q}}_{{\tilde{u}\tilde{p}}}^{\text{intf}} )} \hfill \\ \end{array} \quad \mathop {\left. {\begin{array}{*{20}c} {\frac{\theta }{\Delta t}({\mathbf{Q}}_{up} )\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {\frac{\theta }{\Delta t}({\mathbf{Q}}_{{u\tilde{p}}} )\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\ {\frac{\theta }{\Delta t}({\mathbf{Q}}_{{\tilde{u}p}} + {\mathbf{Q}}_{{\tilde{u}p}}^{\text{intf}} )\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {\frac{\theta }{\Delta t}({\mathbf{Q}}_{{\tilde{u}\tilde{p}}} + {\mathbf{Q}}_{{\tilde{u}\tilde{p}}}^{\text{intf}} )\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\ {({\mathbf{H}}_{pp} + {\mathbf{H}}_{pp}^{\text{intf}} ) + \frac{1}{{\bar{\theta }\Delta t}}({\mathbf{S}}_{pp} + {\mathbf{S}}_{pp}^{\text{intf}} )} & {({\mathbf{H}}_{{p\tilde{p}}} + {\mathbf{H}}_{{p\tilde{p}}}^{\text{intf}} ) + \frac{1}{{\bar{\theta }\Delta t}}({\mathbf{S}}_{{p\tilde{p}}} )\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\ {({\mathbf{H}}_{{\tilde{p}p}} + {\mathbf{H}}_{{\tilde{p}p}}^{\text{intf}} ) + \frac{1}{{\bar{\theta }\Delta t}}({\mathbf{S}}_{pp} + {\mathbf{S}}_{pp}^{\text{intf}} )} & {\,\,({\mathbf{H}}_{{\tilde{p}\tilde{p}}} + {\mathbf{H}}_{{\tilde{p}\tilde{p}}}^{\text{intf}} ) + \frac{1}{{\bar{\theta }\Delta t}}({\mathbf{S}}_{{\tilde{p}\tilde{p}}} + {\mathbf{S}}_{{\tilde{p}\tilde{p}}}^{\text{intf}} ) + {\mathbf{K}}_{\text{fluid}}^{\text{cont}} } \\ \end{array} } \right].}\limits^{{}} } \right.$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahab, M., Khalili, N. X-FEM Modeling of Multizone Hydraulic Fracturing Treatments Within Saturated Porous Media. Rock Mech Rock Eng 51, 3219–3239 (2018). https://doi.org/10.1007/s00603-018-1419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1419-z

Keywords

Navigation