Skip to main content
Log in

Applying soft computing methods to predict the uniaxial compressive strength of rocks from schmidt hammer rebound values

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The uniaxial compressive strength (UCS) of rock is widely used in designing underground and surface rock structures. The testing procedure of this rock strength is expensive and time consuming. In addition, it requires well-prepared rock cores. Therefore, indirect tests are often used to estimate the UCS, such as the Schmidt hammer test. This test is very easy to carry out because it necessitates less or no sample preparation and the testing equipment is less sophisticated. In addition, it can be used easily in the field. As a result, comparing with uniaxial compression test, indirect test is simpler, faster, and more economical. In this paper, the application of soft computing methods for data analysis named support vector regression (SVR) optimized by artificial bee colony algorithm (ABC) and adaptive neuro-fuzzy inference system-subtractive clustering method (ANFIS-SCM) to estimate the UCS of rocks from Schmidt hammer rebound values is demonstrated. The estimation abilities offered using SVR-ABC and ANFIS-SCM were presented by using experimental data given in open-source literatures. In these models, the Schmidt hammer rebound values (T1–T3, R1–R4) were utilized as the input parameters, while the UCS was the output parameter. Various statistical performance indexes were utilized to compare the performance of those estimation models. The results achieved indicate that the ANFIS-SCM model has strong potential to indirect estimation of the UCS of rocks from the Schmidt hammer rebound values with high degree of accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uehigashi, K., Tokairin, Y., Ishikawa, K., Kikuchi, T.: Possibility of rock excavation by boom-type tunneling machines. In: 6th Australian Tunneling Conference, Melbourne 1987, pp. 253–259

  2. Day, M., Goudie, A.: Field assessment of rock hardness using the Schmidt test hammer. Geomorph. Res. Group Technol. Bull. 18, 19–29 (1977)

    Google Scholar 

  3. Day, M.J.: Rock hardness: field assessment and geomorphic importance. Prof. Geograph. 32(1), 72–81 (1980)

    Article  Google Scholar 

  4. Matthews, J.A., Shakesby, R.A.: The status of the ‘Little Ice Age’ in southern Norway: relative-age dating of Neoglacial moraines with Schmidt hammer and lichenometry. Boreas 13(3), 333–346 (1984)

    Article  Google Scholar 

  5. McCarroll, D.: The Schmidt hammer as a measure of degree of rock surface weathering and terrain age. Dating in exposed and surface contexts, 29–45 (1994)

  6. Shakesby, R.A., Matthews, J.A., Karlén, W., Los, S.O.: The Schmidt hammer as a Holocene calibrated-age dating technique: testing the form of the R-value-age relationship and defining the predicted-age errors. The. Holocene. 21(4), 615–628 (2011)

    Article  Google Scholar 

  7. Stahl, T., Winkler, S., Quigley, M., Bebbington, M., Duffy, B., Duke, D.: Schmidt hammer exposure-age dating (SHD) of late Quaternary fluvial terraces in New Zealand. Earth. Surf. Proc. Land. 38(15), 1838–1850 (2013)

    Article  Google Scholar 

  8. Aydin, A., Basu, A.: The Schmidt hammer in rock material characterization. Eng. Geol. 81(1), 1–14 (2005)

    Article  Google Scholar 

  9. Shakesby, R.A., Matthews, J.A., Owen, G.: The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quat. Sci. Rev. 25(21), 2846–2867 (2006)

    Article  Google Scholar 

  10. Hucka, V.: A rapid method of determining the strength of rocks in situ. Int. J. Rock. Mech. Min. Sci. 2(2), 127–134 (1965)

    Article  Google Scholar 

  11. Göktan, R., Ayday, C.: A suggested improvement to the Schmidt rebound hardness ISRM suggested method with particular reference to rock machineability. Int. J. Rock. Mech. Min. Sci. 30(3), 321–322 (1993)

    Article  Google Scholar 

  12. Katz, O., Reches, Z., Roegiers, J.-C.: Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock. Mech. Min. Sci. 37(4), 723–728 (2000)

    Article  Google Scholar 

  13. Buyuksagis, I., Goktan, R.: The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. Int. J. Rock. Mech. Min. Sci. 44(2), 299–307 (2007)

    Article  Google Scholar 

  14. Demirdag, S., Yavuz, H., Altindag, R.: The effect of sample size on Schmidt rebound hardness value of rocks. Int. J. Rock. Mech. Min. Sci. 46(4), 725–730 (2009)

    Article  Google Scholar 

  15. Karaman, K., Ercikdi, B., Cihangir, F., Kesimal, A.: Examining the Schmidt hammer methods. In: Estimating of the uniaxial compressive strength (in Turkish). Paper presented at the the 22nd international mining congress, Turkey

  16. Goktan, R., Gunes, N.: A comparative study of Schmidt hammer testing procedures with reference to rock cutting machine performance prediction. Int. J. Rock. Mech. Min. Sci. 42(3), 466–472 (2005)

    Article  Google Scholar 

  17. Howarth, D., Adamson, W., Berndt, J.: Correlation of model tunnel boring and drilling machine performances with rock properties. Int. J. Rock. Mech. Min. Sci. 23(2), 171–175 (1986)

    Article  Google Scholar 

  18. Kahraman, S.: Rotary and percussive drilling prediction using regression analysis. Int. J. Rock. Mech. Min. Sci. 36(7), 981–989 (1999)

    Article  Google Scholar 

  19. Kahraman, S., Balc, C., Yazc, S., Bilgin, N.: Prediction of the penetration rate of rotary blast hole drills using a new drillability index. Int. J. Rock. Mech. Min. Sci. 37(5), 729–743 (2000)

    Article  Google Scholar 

  20. Li, X., Rupert, G., Summers, D.A., Santi, P., Liu, D.: Analysis of impact hammer rebound to estimate rock drillability. Rock. Mech. Rock. Eng. 33(1), 1–13 (2000)

    Article  Google Scholar 

  21. Kahraman, S., Bilgin, N., Feridunoglu, C.: Dominant rock properties affecting the penetration rate of percussive drills. Int. J. Rock. Mech. Min. Sci. 40(5), 711–723 (2003)

    Article  Google Scholar 

  22. Bilgin, N., Dincer, T., Copur, H.: The performance prediction of impact hammers from Schmidt hammer rebound values in Istanbul metro tunnel drivages. Tunn. Undergr. Space Technol. 17(3), 237–247 (2002)

    Article  Google Scholar 

  23. Young, R., Fowell, R.: Assessing rock discontinuities. Tunnels Tunn. Int. 10(5) (1978)

  24. Poole, R., Farmer, I.: Consistency and repeatability of Schmidt hammer rebound data during field testing. Int. J. Rock. Mech. Min. Sci. 17(3), 167–171 (1980)

    Article  Google Scholar 

  25. I.S.R.M.: Suggested methods for determining hardness and abrasiveness of rocks. Part 3. pp. 101–102 (1981)

  26. Gokceoglu, C., Aksoy, H.: New approaches to the characterization of clay-bearing, densely jointed and weak rock masses. Eng. Geol. 58(1), 1–23 (2000)

    Article  Google Scholar 

  27. Atkinson, R., Bamford, W., Broch, E., Deere, D., Franklin, J., Nieble, C., Rummel, F., Tarkoy, R., Van Duyse, H.: Suggested methods for determining hardness and abrasiveness of rocks. ISRM Commission Standardization of Laboratory and Field Tests. Int. J. Rock. Mech. Min. Sci. Geomech. Abst. 15, 91–97 (1978)

    Google Scholar 

  28. Poole, R., Farmer, I.: Geotechnical factors affecting tunnelling machine performance in coal measures rocks. Tunnels Tunn. 10, 27–30 (1978)

    Google Scholar 

  29. Bilgin, N., Seyrek, T., Erding, E., Shahriar, K.: Roadheaders glean valuable tips for Istanbul Metro, vol. 22 (1990)

  30. Kidybiński, A.: Rebound number and the quality of mine roof strata. Int. J. Rock. Mech. Min. Sci. 5(4), 283–292 (1968)

    Article  Google Scholar 

  31. Karpuz, C.: A classification system for excavation of surface coal measures. Min. Sci. Technol. 11(2), 157–163 (1990)

    Article  Google Scholar 

  32. Kazi, A., Al-Mansour, Z.: Empirical relationship between Los Angeles abrasion and Schmidt hammer strength tests with application to aggregates around Jeddah. Q. J. Eng. Geol. 13(1), 45–52 (1980)

    Article  Google Scholar 

  33. Cargill, J.S., Shakoor, A.: Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. Int. J. Rock. Mech. Min. Sci. 27(6), 495–503 (1990)

    Article  Google Scholar 

  34. Kahraman, S.: Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock. Mech. Min. Sci. 38(7), 981–994 (2001)

    Article  Google Scholar 

  35. Ylmaz, I., Sendr, H.: Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng. Geol. 66(3), 211–219 (2002)

    Article  Google Scholar 

  36. Yaşar, E., Erdoğan, Y.: Estimation of rock physicomechanical properties using hardness methods. Eng. Geol. 71(3), 281–288 (2004)

    Google Scholar 

  37. Dinçer, I., Acar, A., Çobanoğlu, I., Uras, Y.: Correlation between Schmidt hardness, uniaxial compressive strength and Young’s modulus for andesites, basalts and tuffs. Bull. Eng. Geology. Envir. 63(2), 141–148 (2004)

    Article  Google Scholar 

  38. Karakus, M., Tutmez, B.: Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock. Mech. Rock. Eng. 39(1), 45–57 (2006)

    Article  Google Scholar 

  39. Shalabi, F.I., Cording, E.J., Al-Hattamleh, O.H.: Estimation of rock engineering properties using hardness tests. Eng. Geol. 90(3), 138–147 (2007)

    Article  Google Scholar 

  40. Çobanoğlu, I., Çelik, S.B.: Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull. Eng. Geol. Environ. 67(4), 491–498 (2008)

    Article  Google Scholar 

  41. Aydin, A.: ISRM Suggested Method for Determination of the Schmidt Hammer Rebound Hardness: Revised Version. In: The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, pp. 25–33. Springer (2015)

  42. Miller, R.P.: Engineering Classification and Index Properties for Intact Rock. PhD thesis. University of Illinois (1965)

  43. Deere, D.U., Miller, R.: Engineering Classification and Index Properties for Intact Rock, Vol. AFNL-TR, pp. 65–116. DTIC Document, New Mexico (1966)

    Google Scholar 

  44. Kidybiński, A.: Rebound number and the quality of mine roof strata. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 4, pp. 283–292. Elsevier (1968)

  45. Kidybiński, A.: Bursting liability indices of coal. Int. J. Rock. Mech. Min. Sci. 18(4), 295–304 (1981)

    Article  Google Scholar 

  46. Singh, R., Hassani, F., Elkington, P.: The Application of Strength and Deformation Index Testing to the Stability Assessment of Coal Measures Excavations. In: The 24Th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association (1983)

  47. Sheorey, P., Barat, D., Das, M., Mukherjee, K., Singh, B.: Schmidt hammer rebound data for estimation of large scale in situ coal strength. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 1, pp. 39–42. Elsevier (1984)

  48. Haramy, K., DeMarco, M.: Use of the Schmidt Hammer for Rock and Coal Testing. In: The 26Th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association (1985)

  49. Ghose, A.: Empirical Strength Indices of Indian Coals-An Investigation. In: The 27Th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association (1986)

  50. O’Rourke, J.: Rock index properties for geoengineering in underground development. Min. Eng. (Littleton, Colo. United States) 41(2) (1989)

  51. Sachpazis, C.: Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bulletin of the International Association of Engineering Geology-Bulletin de l’Association Internationale de Gé,ologie de l’Ingénieur 42(1), 75–83 (1990)

    Article  Google Scholar 

  52. Xu, S., Grasso, P., Mahtab, A.: Use of Schmidt Hammer for Estimating Mechanical Properties of Weak Rock. In: 6th International IAEG Congress, pp. 511–519. Balkema, Rotterdam (1990)

    Google Scholar 

  53. Fener, M., Kahraman, S., Bilgil, A., Gunaydin, O.: A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock. Mech. Rock. Eng. 38(4), 329–343 (2005)

    Article  Google Scholar 

  54. Klç, A., Teymen, A.: Determination of mechanical properties of rocks using simple methods. Bull. Eng. Geology. Envir. 67(2), 237–244 (2008)

    Article  Google Scholar 

  55. Yagiz, S.: Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geology. Envir. 68(1), 55–63 (2009)

    Article  Google Scholar 

  56. Minaeian, B., Ahangari, K.: Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab. J. Geosci. 6(6), 1925–1931 (2013)

    Article  Google Scholar 

  57. Vapnik, V.: The nature of statistical learning theory. Springer (1999)

  58. Geem, Z.W.: Music-inspired harmony search algorithm: theory and applications, vol. 191. Springer, Verlag (2009)

    Book  Google Scholar 

  59. Wu, C.-H., Tzeng, G.-H., Lin, R.-H.: A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst. Appl. 36(3), 4725–4735 (2009)

    Article  Google Scholar 

  60. Hong, W.-C., Dong, Y., Chen, L.-Y., Wei, S.-Y.: SVR With hybrid chaotic genetic algorithms for tourism demand forecasting. Appl. Softw. Comput. 11(2), 1881–1890 (2011)

    Article  Google Scholar 

  61. Chen, K.-Y., Wang, C.-H.: Support vector regression with genetic algorithms in forecasting tourism demand. Tour. Manag. 28(1), 215–226 (2007)

    Article  Google Scholar 

  62. Huang, C.-L., Wang, C.-J.: A GA-based feature selection and parameters optimizationfor support vector machines. Expert. Syst. Appl. 31(2), 231–240 (2006)

    Article  Google Scholar 

  63. Wu, J., Liu, M., Jin, L.: A hybrid support vector regression approach for rainfall forecasting using particle swarm optimization and projection pursuit technology. Int. J. Comput. Intell. Appl. 9(02), 87–104 (2010)

    Article  Google Scholar 

  64. Tsai, H.-H., Jhuang, Y.-J., Lai, Y.-S.: An SVD-based image watermarking in wavelet domain using SVR and PSO. Appl. Softw. Comput. 12(8), 2442–2453 (2012)

    Article  Google Scholar 

  65. Lu, C.-J., Wu, J.-Y., Chiu, C.-C., Tsai, Y.-J.: Predicting Stock Index Using an Integrated Model of NLICA, SVR and PSO. In: Advances in Neural Networks. ISNN, pp. 228–237. Springer (2011)

  66. Safarzadegan Gilan, S., Bahrami Jovein, H., Ramezanianpour, A.A.: Hybrid support vector regression—particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin. Constr. Build. Mater. 34, 321–329 (2012)

    Article  Google Scholar 

  67. Fattahi, H., Gholami, A., Amiribakhtiar, M.S., Moradi, S.: Estimation of asphaltene precipitation from titration data: a hybrid support vector regression with harmony search. Neural. Comput. Appl., 1–10 (2014)

  68. Singh, A.: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl. Soft. Comput. 9(2), 625–631 (2009)

    Article  Google Scholar 

  69. Kang, F., Li, J., Xu, Q.: Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput. Struct. 87(13), 861–870 (2009)

    Article  Google Scholar 

  70. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Softw. Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  71. Wang, J., Li, T., Ren, R.: A real time idss based on artificial bee colony-support vector machine algorithm. In: 2010 Third International Workshop on Advanced Computational Intelligence (IWACI), pp. 91–96. IEEE (2010)

  72. Almasi, O.N., Mollaei, N., Behzad, H., Madadi, M.: Neuro-fuzzy based approach for identification of a phantom robot. Int. J. Control. Sci. Eng. 4(2), 36–48 (2014)

    Google Scholar 

  73. Wong, C., Worden, K.: Generalised NARX shunting neural network modelling of friction. Mech. Syst. Signal Process. 21(1), 553–572 (2007)

    Article  Google Scholar 

  74. Wang, L.-X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  75. Ho, H., Wong, Y.-K., Rad, A.B., Lo, W.L.: State observer based indirect adaptive fuzzy tracking control. Simul. Model. Pract. Theory 13(7), 646–663 (2005)

    Article  Google Scholar 

  76. Jang, J.S.R.: ANFIS: Adaptive-Network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  77. Armaghani, D.J., Mohamad, E.T., Momeni, E., Narayanasamy, M.S.: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ., 1–19 (2014)

  78. Fattahi, H., Shojaee, S., Farsangi, M.E.: Application of adaptive neuro-fuzzy inference system for the assessment of damaged zone around underground spaces. Int. J. Optim. Civ. Eng. 3(4), 673–693 (2013)

    Google Scholar 

  79. Anifowose, F.A., Labadin, J., Abdulraheem, A.: Prediction of petroleum reservoir properties using different versions of adaptive neuro-fuzzy inference system hybrid models. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 5, 413–426 (2013)

    Google Scholar 

  80. Park, I., Choi, J., Jin Lee, M., Lee, S.: Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Comput. Geosci. 48, 228–238 (2012)

    Article  Google Scholar 

  81. Ja’fari, A., Kadkhodaie-Ilkhchi, A., Sharghi, Y., Ghanavati, K.: Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system. J. Geophys. Eng. 9(1), 105 (2012)

    Article  Google Scholar 

  82. Cabalar, A.F., Cevik, A., Gokceoglu, C.: Some applications of adaptive neuro-fuzzy inference system (ANFIS) in geotechnical engineering. Comput. Geotech. 40, 14–33 (2012)

    Article  Google Scholar 

  83. Fattahi, H., Karimpouli, S.: Prediction of porosity and water saturation using pre-stack seismic attributes: a comparison of Bayesian inversion and computational intelligence methods. Computat Geosci,1–20 (2016)

  84. Karimpouli, S., Fattahi, H.: Estimation of P-and S-wave impedances using Bayesian inversion and adaptive neuro-fuzzy inference system from a carbonate reservoir in Iran. Neural. Comput. Appl., 1–14 (2016)

  85. Fattahi, H.: Indirect estimation of deformation modulus of an in situ rock mass: an ANFIS model based on grid partitioning, fuzzy c-means clustering and subtractive clustering. J. Geosci. 20(5), 681–690 (2016)

    Article  Google Scholar 

  86. Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2(3), 267–278 (1994)

    Google Scholar 

  87. Karaman, K., Kesimal, A.: A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. Bull. Eng. Geol. Environ. 74(2), 507–520 (2014)

    Article  Google Scholar 

  88. ISRM: The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974?2006. In: Ulusay, R., Hudson, J. (eds.) Commission on testing methods. International Society of Rock Mechanics. Compilation arranged by the ISRM Turkish National Group, Ankara, Turkey, vol. 628 (2007)

  89. ASTM: Standard test method for determination of rock hardness by rebound hammer method 04.09 (D 5873-00). In (2001)

  90. USBR: Engineering geology field manual. Field Index Tests 1, 111–112 (1998)

    Google Scholar 

  91. Sumner, P., Nel, W.: The effect of rock moisture on Schmidt hammer rebound: tests on rock samples from Marion Island and South Africa. Earth Surf. Process. Landf. 27(10), 1137–1142 (2002)

    Article  Google Scholar 

  92. Deere, D., Miller, R.: Engineering Classification and Index Properties of Intact Rock: Technical Report No. In: AFWL-TR 65-116, p. 300. University of Illinois (1966)

  93. Chopra, S., Mitra, R., Kumar, V.: Reduction of fuzzy rules and membership functions and its application to fuzzy PI and PD type controllers. Int. J. Control. Autom. Syst. 4(4), 438 (2006)

    Google Scholar 

  94. Ming-bao, P., Xin-ping, Z.: Traffic flow prediction of chaos time series by using subtractive clustering for fuzzy neural network modeling. In: 2nd International Symposium on Intelligent Information Technology Application, 2008. IITA’08, pp. 23–27. IEEE (2008)

  95. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [book review]. IEEE Trans. Autom. Control 42(10), 1482–1484 (1997)

    Article  Google Scholar 

  96. Stavroulakis, P.: Neuro-fuzzy and fuzzy-neural applications in telecommunications (signals and communication technology). Springer (2004)

  97. Smuda, J., Dold, B., Friese, K., Morgenstern, P., Glaesser, W.: Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit, Cerro de Pasco, Peru. J. Geochem. Explor. 92(2), 97–110 (2007)

    Article  Google Scholar 

  98. Ulusay, R., Hudson, J.A.: The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. International Society for Rock Mechanics Commission on Testing Methods (2007)

  99. Materials, A.S.f.T.a.: Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures. Annual Book of ASTM Standards 4.08., Philadelphia, Pennsylvania (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Fattahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi, H. Applying soft computing methods to predict the uniaxial compressive strength of rocks from schmidt hammer rebound values. Comput Geosci 21, 665–681 (2017). https://doi.org/10.1007/s10596-017-9642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9642-3

Keywords

Navigation