Skip to main content
Log in

Enhanced artificial ecosystem-based optimization for global optimization and constrained engineering problems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Artificial ecosystem-based optimization (AEO) is a nature-inspired intelligent optimization algorithm that has been widely applied to various real-world optimization problems. However, AEO has several limitations, including slow convergence and difficulty in escaping from local optima. To address these drawbacks, this study proposes an enhanced variant of AEO called enhanced artificial ecosystem-based optimization (EAEO). First, Latin hypercube sampling is introduced to achieve uniform population initialization. Then, a quadratic interpolation mechanism is embedded to accelerate convergence and improve accuracy. Finally, an adaptive neighborhood search inspired by animal migration behavior is designed to help to jump out of local optima. The performance of EAEO is evaluated using twenty-three benchmark functions and the CEC2017 test suite. The impact analysis, statistical analysis, and sensitivity analysis are performed. Experimental results indicate that EAEO outperforms the original AEO and other comparison algorithms in terms of accuracy and stability. Finally, the proposed EAEO is applied to address seven engineering optimization problems, and the results demonstrate the superiority of EAEO for global optimization tasks, constrained engineering problems, search performance, solution accuracy, and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Zabihzadeh, S.S., Rezaeian, J.: Two meta-heuristic algorithms for flexible flow shop scheduling problem with robotic transportation and release time. Appl. Soft Comput. 40, 319–330 (2016)

    Article  Google Scholar 

  2. Yang, J., Guo, B., Qu, B.: Economic optimization on two time scales for a hybrid energy system based on virtual storage. J. Mod. Power Syst. Clean Energy 6(5), 1004–1014 (2018)

    Article  Google Scholar 

  3. Ding, G., Dong, F., Zou, H.: Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application in multilevel image thresholding. Appl. Soft Comput. 84, 105704 (2019)

    Article  Google Scholar 

  4. Fausto, F., Reyna-Orta, A., Cuevas, E., Andrade, G., Perez-Cisneros, M.: From ants to whales: metaheuristics for all tastes. Artif. Intell. Rev. 53(1), 753–810 (2020)

    Article  Google Scholar 

  5. Gharehchopogh, F.S., Gholizadeh, H.: A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol. Comput. 48, 1–24 (2019)

    Article  Google Scholar 

  6. Gao, D., Wang, G.-G., Pedrycz, W.: Solving fuzzy job-shop scheduling problem using de algorithm improved by a selection mechanism. IEEE Trans. Fuzzy Syst. 28(12), 3265–3275 (2020)

    Article  Google Scholar 

  7. Chen, Y.-B., Luo, G.-C., Mei, Y.-S., Yu, J.-Q., Su, X.-l.: Uav path planning using artificial potential field method updated by optimal control theory. Int. J. Syst. Sci. 47(6), 1407–1420 (2016)

    Article  MathSciNet  Google Scholar 

  8. Akila, S., Christe, S.A.: A wrapper based binary bat algorithm with greedy crossover for attribute selection. Expert Syst. Appl. 187, 115828 (2022)

    Article  Google Scholar 

  9. Chakraborty, S., Nama, S., Saha, A.K., Mirjalili, S.: A modified moth-flame optimization algorithm for image segmentation, 111–128 (2022)

  10. Nama, S.: A modification of i-sos: performance analysis to large scale functions. Appl. Intell. 51(11), 7881–7902 (2021)

    Article  Google Scholar 

  11. Nama, S., Saha, A.K.: A bio-inspired multi-population-based adaptive backtracking search algorithm. Cogn. Comput. 14(2), 900–925 (2022)

    Article  Google Scholar 

  12. Sahoo, S.K., Saha, A.K., Nama, S., Masdari, M.: An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artif. Intell. Rev. 56(4), 2811–2869 (2022)

    Article  Google Scholar 

  13. Chakraborty, P., Nama, S., Saha, A.K.: A hybrid slime mould algorithm for global optimization. Multimed. Tools Appl. 82(15), 22441–22467 (2022)

    Article  Google Scholar 

  14. Nama, S., Kumar Saha, A., Ghosh, S.: A hybrid symbiosis organisms search algorithm and its application to real world problems. Memet. Comput. 9(3), 261–280 (2016)

    Article  Google Scholar 

  15. Nama, S., Saha, A.K.: A new hybrid differential evolution algorithm with self-adaptation for function optimization. Appl. Intell. 48(7), 1657–1671 (2017)

    Article  Google Scholar 

  16. Saha, A., Nama, S., Ghosh, S.: Application of hsos algorithm on pseudo-dynamic bearing capacity of shallow strip footing along with numerical analysis. Int. J. Geotech. Eng. 15(10), 1298–1311 (2019)

    Article  Google Scholar 

  17. Nama, S., Saha, A.K., Sharma, S.: Performance up-gradation of symbiotic organisms search by backtracking search algorithm. J. Ambient. Intell. Humaniz. Comput. 13(12), 5505–5546 (2021)

    Article  Google Scholar 

  18. Nama, S., Saha, A.K.: A new parameter setting-based modified differential evolution for function optimization. Int. J. Model. Simul. Sci. Comput. 11(04), 2050029 (2020)

    Article  Google Scholar 

  19. Nama, S., Saha, A.K., Sharma, S.: A novel improved symbiotic organisms search algorithm. Comput. Intell. 38(3), 947–977 (2020)

    Article  Google Scholar 

  20. Nama, S.: A novel improved sma with quasi reflection operator: Performance analysis, application to the image segmentation problem of covid-19 chest x-ray images. Appl. Soft Comput. 118, 108483 (2022)

    Article  Google Scholar 

  21. Nama, S., Saha, A.K., Chakraborty, S., Gandomi, A.H., Abualigah, L.: Boosting particle swarm optimization by backtracking search algorithm for optimization problems. Swarm Evol. Comput. 79, 101304 (2023)

    Article  Google Scholar 

  22. Nama, S., Saha, A.K., Ghosh, S.: Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c-backfill. Appl. Soft Comput. 52, 885–897 (2017)

    Article  Google Scholar 

  23. Zamani, H., Nadimi-Shahraki, M.H.: An evolutionary crow search algorithm equipped with interactive memory mechanism to optimize artificial neural network for disease diagnosis. Biomed. Signal Process. Control 90, 105879 (2024)

    Article  Google Scholar 

  24. Fatahi, A., Nadimi-Shahraki, M.H., Zamani, H.: An improved binary quantum-based avian navigation optimizer algorithm to select effective feature subset from medical data: a covid-19 case study. J. Bionic Eng. 21(1), 426–446 (2023)

    Article  Google Scholar 

  25. Nadimi-Shahraki, M.H., Zamani, H., Fatahi, A., Mirjalili, S.: Mfo-sfr: an enhanced moth-flame optimization algorithm using an effective stagnation finding and replacing strategy. Mathematics 11(4), 862 (2023)

    Article  Google Scholar 

  26. Nadimi-Shahraki, M.H., Asghari Varzaneh, Z., Zamani, H., Mirjalili, S.: Binary starling murmuration optimizer algorithm to select effective features from medical data. Appl. Sci. 13(1), 564 (2022)

    Article  Google Scholar 

  27. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Qana: quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 104, 104314 (2021)

    Article  Google Scholar 

  28. Nama, S., Saha, A.K., Ghosh, S.: A new ensemble algorithm of differential evolution and backtracking search optimization algorithm with adaptive control parameter for function optimization. Int. J. Ind. Eng. Comput. 7, 323–338 (2016)

    Google Scholar 

  29. Bhoi, A.K., Mallick, P.K., Liu, C.-M., Balas, V.E.: Bio-inspired neurocomputing 310 (2021)

  30. Yuanxing, X., Mengjian, Z., Ming, Y., Deguang, W.: Hybrid quantum particle swarm optimization and variable neighborhood search for flexible job-shop scheduling problem. J. Manuf. Syst. 73, 334–348 (2024)

    Article  Google Scholar 

  31. Zhang, M., Wang, D., Yang, M., Tan, W., Yang, J.: Hpsba: a modified hybrid framework with convergence analysis for solving wireless sensor network coverage optimization problem. Axioms 11(12), 675 (2022)

    Article  Google Scholar 

  32. Zhang, M., Wang, D., Yang, J.: Hybrid-flash butterfly optimization algorithm with logistic mapping for solving the engineering constrained optimization problems. Entropy 24(4), 525 (2022)

    Article  MathSciNet  Google Scholar 

  33. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

  34. Yang, X.-S., Deb, S.: Cuckoo search via levy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214 (2009)

  35. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  36. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  37. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  38. Xue, J., Shen, B.: A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Control Eng. 8(1), 22–34 (2020)

    Article  Google Scholar 

  39. Abdel-Basset, M., Mohamed, R., Jameel, M., Abouhawwash, M.: Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif. Intell. Rev. 56(10), 11675–11738 (2023)

    Article  Google Scholar 

  40. Abdel-Basset, M., Mohamed, R., Jameel, M., Abouhawwash, M.: Nutcracker optimizer: a novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems. Knowl.-Based Syst. 262, 110248 (2023)

    Article  Google Scholar 

  41. Zhang, M., Wen, G.: Duck swarm algorithm: theory, numerical optimization, and applications. Clust. Comput. (2024)

  42. Zhao, W., Wang, L., Zhang, Z.: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput. Appl. 32, 9383–9425 (2020)

    Article  Google Scholar 

  43. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  44. Elkholy, M.M., El Hameed, M.A., El Fergany, A.A.: Artificial ecosystem based optimiser to electrically characterise pv generating systems under various operating conditions reinforced by experimental validations. IET Renew. Power Gener. 15(3), 701–715 (2021)

    Article  Google Scholar 

  45. Eid, A., Kamel, S., Korashy, A., Khurshaid, T.: An enhanced artificial ecosystem-based optimization for optimal allocation of multiple distributed generations. IEEE Access 8, 178493–178513 (2020)

    Article  Google Scholar 

  46. Ewees, A.A., Abualigah, L., Yousri, D., Sahlol, A.T., Al-Qaness, M.A., Alshathri, S., Elaziz, M.A.: Modified artificial ecosystem-based optimization for multilevel thresholding image segmentation. Mathematics 9(19), 2363 (2021)

    Article  Google Scholar 

  47. Nguyen, T.T.: A novel metaheuristic method based on artificial ecosystem-based optimization for optimization of network reconfiguration to reduce power loss. Soft. Comput. 25(23), 14729–14740 (2021)

    Article  Google Scholar 

  48. Shaheen, A., Elsayed, A., Ginidi, A., El-Sehiemy, R., Elattar, E.: Reconfiguration of electrical distribution network-based dg and capacitors allocations using artificial ecosystem optimizer: Practical case study. Alex. Eng. J. 61(8), 6105–6118 (2022)

    Article  Google Scholar 

  49. Nguyen, T.T., Nguyen, T.T., Tran, T.N.: Parameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimization. Neural Comput. Appl. 34(15), 12819–12844 (2022)

    Article  Google Scholar 

  50. Mostafa, R.R., Ewees, A.A., Ghoniem, R.M., Abualigah, L., Hashim, F.A.: Boosting chameleon swarm algorithm with consumption aeo operator for global optimization and feature selection. Knowl.-Based Syst. 246, 108743 (2022)

    Article  Google Scholar 

  51. Bhattacharjee, K., Shah, K., Soni, J.: Solving economic dispatch using artificial eco system-based optimization. Electr. Power Compon. Syst. 49(11–12), 1034–1051 (2022)

    Google Scholar 

  52. Nguyen, T.T., Nguyen, T.T., Le, B.: Artificial ecosystem optimization for optimizing of position and operational power of battery energy storage system on the distribution network considering distributed generations. Expert Syst. Appl. 208, 118127 (2022)

    Article  Google Scholar 

  53. Wilberforce, T., Rezk, H., Olabi, A., Epelle, E.I., Abdelkareem, M.A.: Comparative analysis on parametric estimation of a pem fuel cell using metaheuristics algorithms. Energy 262, 125530 (2023)

    Article  Google Scholar 

  54. Van Thieu, N., Deb Barma, S., Van Lam, T., Kisi, O., Mahesha, A.: Groundwater level modeling using augmented artificial ecosystem optimization. J. Hydrol. 617, 129034 (2023)

    Article  Google Scholar 

  55. Rosli, S.J., Rahim, H.A., Abdul Rani, K.N., Ngadiran, R., Ahmad, R.B., Yahaya, N.Z., Abdulmalek, M., Jusoh, M., Yasin, M.N.M., Sabapathy, T.: A hybrid modified method of the sine cosine algorithm using latin hypercube sampling with the cuckoo search algorithm for optimization problems. Electronics 9(11), 1786 (2020)

    Article  Google Scholar 

  56. Mousavirad, S.J., Bidgoli, A.A., Rahnamayan, S.: Tackling deceptive optimization problems using opposition-based de with center-based latin hypercube initialization. In: 2019 14th International Conference on Computer Science & Education (ICCSE), pp. 394–400 (2019)

  57. Sun, Y., Yang, T., Liu, Z.: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems. Appl. Soft Comput. 85, 105744 (2019)

    Article  Google Scholar 

  58. Zhao, W., Wang, L., Zhang, Z., Mirjalili, S., Khodadadi, N., Ge, Q.: Quadratic interpolation optimization (qio): a new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems. Comput. Methods Appl. Mech. Eng. 417, 116446 (2023)

    Article  MathSciNet  Google Scholar 

  59. Zeng, N., Wang, Z., Liu, W., Zhang, H., Hone, K., Liu, X.: A dynamic neighborhood-based switching particle swarm optimization algorithm. IEEE Trans. Cybern. 52(9), 9290–9301 (2022)

    Article  Google Scholar 

  60. Zhou, X., Wu, Y., Zhong, M., Wang, M.: Artificial bee colony algorithm based on adaptive neighborhood topologies. Inf. Sci. 610, 1078–1101 (2022)

    Article  Google Scholar 

  61. Viana, F.A.: A tutorial on latin hypercube design of experiments. Qual. Reliab. Eng. Int. 32(5), 1975–1985 (2016)

    Article  Google Scholar 

  62. Vandebogert, K.: Method of quadratic interpolation. PhD Thesis (2017)

  63. Deep, K., Das, K.N.: Quadratic approximation based hybrid genetic algorithm for function optimization. Appl. Math. Comput. 203(1), 86–98 (2008)

    Google Scholar 

  64. Qaraad, M., Amjad, S., Hussein, N.K., Elhosseini, M.A.: An innovative quadratic interpolation salp swarm-based local escape operator for large-scale global optimization problems and feature selection. Neural Comput. Appl. 34(20), 17663–17721 (2022)

    Article  Google Scholar 

  65. Chen, X., Mei, C., Xu, B., Yu, K., Huang, X.: Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization. Knowl.-Based Syst. 145, 250–263 (2018)

    Article  Google Scholar 

  66. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  Google Scholar 

  67. Joaqun, D., Salvador, G., Daniel, M., Francisco, H.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  68. Joaqun, D., Salvador, G., Daniel, M., Francisco, H.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  69. Chopra, N., Ansari, M.M.: Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 198, 116924 (2022)

    Article  Google Scholar 

  70. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2019)

    Article  Google Scholar 

  71. Zhong, C., Li, G., Meng, Z.: Beluga whale optimization: a novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 251, 109215 (2022)

    Article  Google Scholar 

  72. Lian, J., Hui, G., Ma, L., Zhu, T., Wu, X., Heidari, A.A., Chen, Y., Chen, H.: Parrot optimizer: Algorithm and applications to medical problems. Comput. Biol. Med. (2024)

  73. Dehghani, M., Montazeri, Z., Trojovsk, E., Trojovsk, P.: Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 259, 110011 (2023)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 62341303, 52265066, and 62203132, and Guizhou Provincial Science and Technology Projects under Grant No. Qiankehejichu [ZK[2022]Yiban103].

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to paper through either code, experiments or writing.

Corresponding author

Correspondence to Deguang Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Tables 25, 26.

Table 25 Description of twenty-three benchmark functions
Table 26 Description of the CEC2017 test suite

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Zhang, M. et al. Enhanced artificial ecosystem-based optimization for global optimization and constrained engineering problems. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04488-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04488-2

Keywords

Navigation