Skip to main content
Log in

Parameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Due to the nonlinear characteristic of the power-voltage (P–V) and current–voltage (I–V) relationship of the photovoltaic systems, building accurate mathematical models of photovoltaic cell and module is essential for validation and optimization performance of photovoltaic systems. However, determination of the unknown parameters of photovoltaic cell and module models is a complex nonlinear optimization problem that requires effective solving methods. This paper proposes an approach of parameter estimation of photovoltaic cell and module models based on artificial ecosystem-based optimization (AEO). The AEO is a new developed metaheuristic algorithm taken idea of the mechanisms of ecosystem consisting of production, consumption and decomposition. The advanced feature of AEO is the diversity of exploration and exploitation mechanisms without special control parameters. The performance of AEO is discussed in two photovoltaic cell models and two photovoltaic module models. Its performances compared to five algorithms consisting of backtracking search algorithm (BSA), cuckoo search algorithm (CSA), equilibrium optimizer (EO), genetic algorithm (GA) and particle swarm optimization (PSO) as well as the previous methods. The numerical results show that AEO has given the better performance than BSA, CSA, EO, GA and PSO for the problem of parameter estimation of photovoltaic models in terms of aspects such as reaching the lower error between the experimental and estimated values and having the better statistical results in several runs than the above methods. Thus, AEO can be an effective method for estimating the unknown parameters of photovoltaic cell and module models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. https://data.worldbank.org/indicator/EG.ELC.RNWX.ZS

  2. Ibrahim IA, Hossain MJ, Duck BC, Nadarajah M (2020) An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model. Energy Convers Manag 213:112872. https://doi.org/10.1016/j.enconman.2020.112872

    Article  Google Scholar 

  3. Gao X, Cui Y, Hu J et al (2018) Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Convers Manag 157:460–479. https://doi.org/10.1016/j.enconman.2017.12.033

    Article  Google Scholar 

  4. Rezaee Jordehi A (2018) Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol Energy 159:78–87. https://doi.org/10.1016/j.solener.2017.10.063

    Article  Google Scholar 

  5. Zhang Y, Jin Z, Zhao X, Yang Q (2020) Backtracking search algorithm with Lévy flight for estimating parameters of photovoltaic models. Energy Convers Manag 208:112615. https://doi.org/10.1016/j.enconman.2020.112615

    Article  Google Scholar 

  6. Xiong G, Zhang J, Shi D et al (2020) Winner-leading competitive swarm optimizer with dynamic Gaussian mutation for parameter extraction of solar photovoltaic models. Energy Convers Manag 206:112450. https://doi.org/10.1016/j.enconman.2019.112450

    Article  Google Scholar 

  7. Nunes HGG, Pombo JAN, Mariano SJPS et al (2018) A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl Energy 211:774–791. https://doi.org/10.1016/j.apenergy.2017.11.078

    Article  Google Scholar 

  8. Qais MH, Hasanien HM, Alghuwainem S (2020) Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization. Energy. https://doi.org/10.1016/j.energy.2020.117040

    Article  Google Scholar 

  9. Khanna V, Das BK, Bisht D et al (2015) A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew Energy 78:105–113. https://doi.org/10.1016/j.renene.2014.12.072

    Article  Google Scholar 

  10. Kennerud KL (1969) Analysis of performance degradation in CDS solar cells. IEEE Trans Aerosp Electr Syst 5:912–917. https://doi.org/10.1109/TAES.1969.309966

    Article  Google Scholar 

  11. Saleem H, Karmalkar S (2009) An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J-V curve. IEEE Electron Dev Lett 30:349–352

    Article  Google Scholar 

  12. Long W, Cai S, Jiao J et al (2020) A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers Manag 203:112243. https://doi.org/10.1016/j.enconman.2019.112243

    Article  Google Scholar 

  13. Li S, Gu Q, Gong W, Ning B (2020) An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Convers Manag 205:112443. https://doi.org/10.1016/j.enconman.2019.112443

    Article  Google Scholar 

  14. El Tayyan AA (2015) An approach to extract the parameters of solar cells from their illuminated I–V curves using the Lambert W function. Turk J Phys 39:1–15. https://doi.org/10.3906/fiz-1309-7

    Article  Google Scholar 

  15. Gao X, Cui Y, Hu J et al (2016) Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction. Energy Convers Manag 127:443–460. https://doi.org/10.1016/j.enconman.2016.09.005

    Article  Google Scholar 

  16. Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C (1986) Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int J Solar Energy 4:1–12. https://doi.org/10.1080/01425918608909835

    Article  Google Scholar 

  17. Liang J, Ge S, Qu B et al (2020) Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models. Energy Convers Manag 203:112138. https://doi.org/10.1016/j.enconman.2019.112138

    Article  Google Scholar 

  18. Harrag A, Messalti S (2017) Three, five and seven PV model parameters extraction using PSO. Energy Procedia 119:767–774. https://doi.org/10.1016/j.egypro.2017.07.104

    Article  Google Scholar 

  19. Ben MR (2020) Extraction of uncertain parameters of single and double diode model of a photovoltaic panel using Salp Swarm algorithm. Meas J Int Meas Confed 154:107446. https://doi.org/10.1016/j.measurement.2019.107446

    Article  Google Scholar 

  20. Niu Q, Zhang L, Li K (2014) A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells. Energy Convers Manag 86:1173–1185. https://doi.org/10.1016/j.enconman.2014.06.026

    Article  Google Scholar 

  21. Liang J, Qiao K, Yuan M et al (2020) Evolutionary multi-task optimization for parameters extraction of photovoltaic models. Energy Convers Manag 207:112509. https://doi.org/10.1016/j.enconman.2020.112509

    Article  Google Scholar 

  22. Yu K, Qu B, Yue C et al (2019) A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl Energy 237:241–257. https://doi.org/10.1016/j.apenergy.2019.01.008

    Article  Google Scholar 

  23. Zagrouba M, Sellami A, Bouaïcha M, Ksouri M (2010) Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Sol Energy 84:860–866. https://doi.org/10.1016/j.solener.2010.02.012

    Article  Google Scholar 

  24. Ma J, Ting TO, Man KL et al (2013) Parameter estimation of photovoltaic models via cuckoo search. J Appl Math 2013:10–12. https://doi.org/10.1155/2013/362619

    Article  MathSciNet  Google Scholar 

  25. Chen X, Yu K (2019) Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Sol Energy 180:192–206. https://doi.org/10.1016/j.solener.2019.01.025

    Article  Google Scholar 

  26. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  27. Yu KJ, Ge SL, Qu BY, Liang JJ (2019) A modified particle swarm optimization for parameters identification of photovoltaic models. In: Proceedings of the 2019 IEEE congress on evolutionary computation, CEC 2019, pp 2634–2641. https://doi.org/10.1109/CEC.2019.8790203

  28. Yang X-S (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, Hoboken

    Book  Google Scholar 

  29. Zhao W, Wang L, Zhang Z (2020) Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput Appl 32:9383–9425. https://doi.org/10.1007/s00521-019-04452-x

    Article  Google Scholar 

  30. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addision-Wesley, Boston

    MATH  Google Scholar 

  31. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, pp 39–43. https://doi.org/10.1109/ICNN.1995.488968

  32. Civicioglu P (2013) Backtracking Search Optimization Algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of the 2009 world congress on nature and biologically inspired computing, NABIC 2009, pp 210–214

  34. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  35. Gong W, Cai Z (2013) Parameter extraction of solar cell models using repaired adaptive differential evolution. Sol Energy 94:209–220. https://doi.org/10.1016/j.solener.2013.05.007

    Article  Google Scholar 

  36. Yu K, Liang JJ, Qu BY et al (2017) Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers Manag 150:742–753. https://doi.org/10.1016/j.enconman.2017.08.063

    Article  Google Scholar 

  37. Askarzadeh A, Rezazadeh A (2013) Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl Energy 102:943–949. https://doi.org/10.1016/j.apenergy.2012.09.052

    Article  Google Scholar 

  38. Askarzadeh A, Rezazadeh A (2013) Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Sol Energy 90:123–133. https://doi.org/10.1016/j.solener.2013.01.010

    Article  Google Scholar 

  39. Jiang LL, Maskell DL, Patra JC (2013) Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Appl Energy 112:185–193. https://doi.org/10.1016/j.apenergy.2013.06.004

    Article  Google Scholar 

  40. Chen X, Yue H, Yu K (2019) Perturbed stochastic fractal search for solar PV parameter estimation. Energy 189:116247. https://doi.org/10.1016/j.energy.2019.116247

    Article  Google Scholar 

  41. Yu K, Liang JJ, Qu BY et al (2018) Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl Energy 226:408–422. https://doi.org/10.1016/j.apenergy.2018.06.010

    Article  Google Scholar 

  42. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. In: Proceedings of the sixth international symposium on micro machine and human science, pp 39–43

  43. Haupt RL, Haupt SE (2004) Practical genetic algorithms, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  44. Derick M, Rani C, Rajesh M et al (2017) An improved optimization technique for estimation of solar photovoltaic parameters. Sol Energy 157:116–124. https://doi.org/10.1016/j.solener.2017.08.006

    Article  Google Scholar 

  45. Beigi AM, Maroosi A (2018) Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms. Sol Energy 171:435–446. https://doi.org/10.1016/j.solener.2018.06.092

    Article  Google Scholar 

  46. Chen X, Xu B, Mei C et al (2018) Teaching–learning-based artificial bee colony for solar photovoltaic parameter estimation. Appl Energy 212:1578–1588. https://doi.org/10.1016/j.apenergy.2017.12.115

    Article  Google Scholar 

  47. Chen X, Yu K, Du W et al (2016) Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy 99:170–180. https://doi.org/10.1016/j.energy.2016.01.052

    Article  Google Scholar 

  48. Qais MH, Hasanien HM, Alghuwainem S, Nouh AS (2019) Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. Energy 187:116001. https://doi.org/10.1016/j.energy.2019.116001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuan Thanh Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 17, 18, 19, 20, 21, 22 and 23.

Table 17 Simulated results of AEO for KC200GT PVM at temperature of 25 °C and irradiance of 1 kW/m2
Table 18 Simulated results of AEO for KC200GT PVM at temperature of 25 °C and irradiance of 0.8 kW/m2
Table 19 Simulated results of AEO for KC200GT PVM at temperature of 25 °C and irradiance of 0.6 kW/m2
Table 20 Simulated results of AEO for KC200GT PVM at temperature of 25 °C and irradiance of 0.4 kW/m2
Table 21 Simulated results of AEO for KC200GT PVM at temperature of 25 °C and irradiance of 0.2 kW/m2
Table 22 Simulated results of AEO for KC200GT PVM at irradiance of 1 kW/m2 and temperature of 50 °C
Table 23 Simulated results of AEO for KC200GT PVM at irradiance of 1 kW/m2 and temperature of 75 °C

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Nguyen, T.T. & Tran, T.N. Parameter estimation of photovoltaic cell and module models relied on metaheuristic algorithms including artificial ecosystem optimization. Neural Comput & Applic 34, 12819–12844 (2022). https://doi.org/10.1007/s00521-022-07142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07142-3

Keywords

Navigation