Skip to main content
Log in

Reversible encryption and lossless data hiding for medical imaging aiding smart health care

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

E-health solutions for smart cities seem quite promising in resolving health problems, however, there are many challenges associated with it and one of the challenge is the secure and reliable error-free transmission/reception of medical images and associated data. In this paper, we have proposed an efficient technique to securely as well as reliably transfer medical images. In our proposed technique, we use singular value decomposition (SVD) and Discrete Wavelet Haar Transformation (DWT) for hiding the data while encryption is done through standard cipher key. At the receiving end, SVD, DWT, and the key are used to decrypt the image and extract both the image and hidden data. Extensive simulations are carried out on MATLAB in order to evaluate various parameters such as Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Bit Error Rate (BER) and robustness test, in order to illustrate the robustness and imperceptibility of the proposed technique. Our simulation results have proven the suitability of our algorithm for data hiding in medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

None.

Abbreviations

SVD:

Singular value decomposition

DWT:

Discrete wavelet transform

PSNR:

Peak signal to noise ratio

EHR:

Electronic health record

IoT:

Internet of things

RDM:

Recursive dither modulation

LSB:

Least significant bit

ROI:

Region of interest

MRI:

Magnetic resonance imaging

DCT:

Discrete cosine transform

MSE:

Mean square error

IPTV:

Internet protocol television

BER:

Bit error rate

CT:

Computed tomography

FPGA:

Field-programmable gate array

GPU:

Graphics processing unit

VoD:

Video on demand

RONI:

Region of none interest

References

  1. Haris, M., Jangsher, S., Qureshi, H. K., Mumtaz, S., Al Dulairui, A.: Power allocation for reliable smart grid communication employing neighborhood area networks. IEEE Global Communications Conference (GLOBECOM) pp. 1–6 (2018)

  2. Li, J., Zhou, Z., Wu, J., Li, J., Mumtaz, S., Lin, X., Gacanin, H., Alotaibi, S.: Decentralized on-demand energy supply for blockchain in internet of things: a microgrids approach. IEEE Trans. Comput. Soc. Syst. 6(6), 1395–1406 (2019)

    Article  Google Scholar 

  3. Abraray, A.-G., Huq, K. M. S., Mumtaz, S., Rodriguez, J., El Mrabet, O., Farkhsi, A., Floc’h, J-M., Si, P.: A metamaterial-inspired small rectenna for RF energy harvesting based on a 3-way power combiner. IEEE Global Communications Conference (GLOBECOM) pp. 1–6 (2019)

  4. Alabady, S.A., Salleh, M.F.M., Al-Turjman, F.: LCPC error correction code for IoT applications. Sustain. Cities Soc. 42, 663–673 (2018)

    Article  Google Scholar 

  5. Al-Turjman, F., Mostarda, L., Ever, E., Darwish, A., Khalil, N.S.: Network experience scheduling and routing approach for big data transmission in the Internet of Things. IEEE Access 7, 14501–14512 (2019)

    Article  Google Scholar 

  6. Wang, S., Liu, X., Muhammad, K., Heidari, A.A., Del Ser, J., de Albuquerque, V.H.: Human short-long term cognitive memory mechanism for visual monitoring in IoT-assisted smart cities. IEEE Internet Things J. 9(10), 7128–7139 (2021)

    Article  Google Scholar 

  7. Liu, X., Chen, S., Song, L., Woźniak, M., Liu, S.: Self-attention negative feedback network for real-time image super-resolution. J. King Saud Univ. Comput. Inform. Sci. 34(8), 6179–6186 (2022)

    Google Scholar 

  8. Mohamed, M.A.: A proposed security technique based on watermarking and encryption for digital imaging and communications in medicine. Egypt. Infor. J. 14(1), 01–13 (2013)

    Article  Google Scholar 

  9. Taranovsky, D. et al.: Data hiding and digital watermarking. Handbook of Visual Display Technology, Springer pp. 387–399 (2012)

  10. Liu, Y., Ma, Z., Liu, X., Ma, S., Ren, K.: Privacy-preserving object detection for medical images with faster R-CNN. IEEE Trans. Inform. Forens. Secur. (2019)

  11. Liu, X., Lu, R., Ma, J., Chen, L., Qin, B.: Privacy-preserving patient-centric clinical decision support system on Naïve Bayesian classification. IEEE J. Biomed. Health Informat. 20(2), 655–668 (2016)

    Article  Google Scholar 

  12. Liu, S., Rho, S., Jifara, W., Jiang, F., Liu, C.: A hybrid framework of data hiding and encryption in H.264/SVC. Discret. Appl. Math. 241, 48–57 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tarif, E.B., Wibowo, S., Wasimi, S., et al.: A hybrid encryption/hiding method for secure transmission of biometric data in multimodal authentication system. Multimedia Tools Appl. 77(2), 2485–2503 (2018)

    Article  Google Scholar 

  14. Shabir, A.P., Javaid, A.S., Farhana, A., Nazir, A.L., Bhat, G.M.: Information hiding in medical images: a robust medical image watermarking system for E-healthcare. Multimedia Tools Appl. 76(8), 10599–10633 (2017)

    Article  Google Scholar 

  15. Lie, B., Tan, E.L., Chen, S., Ni, D., Wang, T., Lei, H.: Reversible watermarking scheme for medical image based on differential evolution. Expert Syst. Appl. 41(7), 3178–3188 (2014)

    Article  Google Scholar 

  16. Bouslimi, D., Coatrieux, G., Roux, C.: A joint encryption/watermarking algorithm for verifying the reliability of medical images: application to echographic images. Comput. Methods Programs Biomed. 106(1), 47–54 (2012)

    Article  Google Scholar 

  17. Fotopoulos, V., Stavrinou, M.L., Skodras, A.N.: Medical image authentication and self-correction through an adaptive reversible watermarking technique. Proceeding of the of the 8th IEEE International Conference on BioInformatics and BioEngineering, pp. 1–5 (2008)

  18. Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)

    Article  Google Scholar 

  19. Xuan, G., Yao, Q., Yang, C., Gao, J., Chai, P., Shi, Y.Q., Ni, Z.: Lossless data hiding using histogram shifting method based on integer wavelets. Int. Workshop Digit. Watermark. 4283, 323–332 (2006)

    Article  Google Scholar 

  20. Zhang, X.: Separable reversible data hiding in encrypted image. IEEE Trans. Inform. Forens. Secur. 7(2), 826–832 (2012)

    Article  Google Scholar 

  21. Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking using interpolation technique. IEEE Trans. Inform. Forens. Secur. 5(1), 187–193 (2010)

    Article  Google Scholar 

  22. Asgari Taghanaki, S., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review. Artif. Intell. Rev. 54(1), 137–78 (2021)

    Article  Google Scholar 

  23. Kumar, A., Sharma, S., Goyal, N., Singh, A., Cheng, X., Singh, P.: Secure and energy-efficient smart building architecture with emerging technology IoT. Comput. Commun. 176, 207–17 (2021)

    Article  Google Scholar 

  24. Anand, A., Singh, A.K.: SDH: secure data hiding in fused medical image for smart healthcare. IEEE Trans. Comput. Soc. Syst. 9(4), 25 (2022)

    Article  Google Scholar 

  25. Sun, J., Xiong, H., Liu, X., Zhang, Y., Nie, X., Deng, R.H.: Lightweight and privacy-aware fine-grained access control for IoT-oriented smart health. IEEE Internet Things J. 7(7), 6566–6575 (2020)

    Article  Google Scholar 

  26. Schneier, B.: Applied Cryptography. Wiley, New York (1996)

    MATH  Google Scholar 

  27. Cox, I., Miller, M., Bloom, J.: Digital Watermarking. Academic Press, Cambridge (2002)

    Google Scholar 

  28. lai, C.C., Tsai, C.C.: Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans. Instrum. Meas. 59(11), 3060–3063 (2010)

    Article  Google Scholar 

  29. Majumdar, S., Devi, K.J., Sarkar, S.K.: Singular value decomposition and wavelet-based iris biometric watermarking. IET Biom. 2(1), 21–27 (2013)

    Article  Google Scholar 

  30. Makbol, N.M., Khoo, B.E., Rassem, T.H.: Block-based discrete wavelet transform-singular value decomposition image watermarking scheme using human visual system characteristics. IET Image Process. 10(1), 34–52 (2016)

    Article  Google Scholar 

  31. Bartrina-Rapesta, J., Sanchez, V., Serra-Sagristà, J., Marcellin, M.W., Aulí-Llinàs, F., Blanes: Lossless medical image compression through lightweight binary arithmetic coding. Appl. Digital Image Process. XL 10396, 103960S (2017)

    Google Scholar 

  32. Sharma, S., Sood, M., Puthooran, E.: A novel resolution independent gradient edge predictor for lossless compression of medical image sequences. Int. J. Comput. Appl. 43(8), 764–774 (2021)

    Google Scholar 

  33. Yin, Z., Abel, A., Tang, J., Zhang, X., Luo, B.: Reversible data hiding in encrypted images based on multi-level encryption and block histogram modification. Multimed. Tools Appl. 76(3), 89 (2017)

    Article  Google Scholar 

  34. Rundo, L., Tangherloni, A., Nobile, M.S., Militello, C., Besozzi, D., Mauri, G., Cazzaniga, P.: MedGA: a novel evolutionary method for image enhancement in medical imaging systems. Expert Syst. Appl. 119, 387–399 (2019)

    Article  Google Scholar 

  35. Arham, A., Nugroho, H.A., Adji, T.B.: Multiple layer data hiding scheme based on difference expansion of quad. Signal Process. 137, 52–62 (2017)

    Article  Google Scholar 

  36. Zhang, Z., Zhang, M., Wang, L.: Reversible image watermarking algorithm based on quadratic difference expansion. Math. Probl. Eng. (2020)

Download references

Funding

Sattam Al Otaibi would like to thank Taif University Researchers Supporting Project number (TURSP-2020/228), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Paper Write Up: AB, NM. Concept: AB, MS. Visualization & Implementation: AB, WTT . Proof Reading: SAK. Overall Supervision: MS, SAO.

Corresponding author

Correspondence to Muhammad Saadi.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

None.

Informed consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, A., Toor, W.T., Saadi, M. et al. Reversible encryption and lossless data hiding for medical imaging aiding smart health care. Cluster Comput 26, 2977–2991 (2023). https://doi.org/10.1007/s10586-022-03792-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03792-z

Keywords

Navigation