Skip to main content

Advertisement

Log in

Distribution of TRPVs, P2X3, and Parvalbumin in the Human Nodose Ganglion

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Immunohistochemistry for several neurochemical substances, the transient receptor potential cation channel subfamily V member 1 (TRPV1) and 2 (TRPV2), P2X3 receptor, and parvalbumin (PV), was performed on the nodose ganglion, pharynx, and epiglottis in human cadavers. The nodose ganglion was situated beneath the jugular foramen, and had a spindle shape with the long rostrocaudal axis. The pharyngeal branch (PB) issued from a rostral quarter of the nodose ganglion, whereas the superior laryngeal nerve (SLN) usually originated from a caudal half of the ganglion. In the nodose ganglion, sensory neurons were mostly immunoreactive for TRPV1 (89 %) or P2X3 (93.9 %). About 30 % of nodose neurons contained TRPV2 (35.7 %)—or PV (29.9 %)—immunoreactivity (-IR). These neurons mainly had small to medium-sized cell bodies, and were distributed throughout the ganglion. Neurodegenerative profiles such as shrinkage or pyknosis could not be detected in the examined ganglion. Occasionally, TRPV2-IR nerve fibers surrounded blood vessels in the epiglottis as well as in the nasal and oral parts of the pharynx. Isolated TRPV2-IR nerve fibers were also located beneath the epithelium. TRPV1-, P2X3-, or PV-IR nerve endings could not be detected in the pharynx or epiglottis. In the PB and SLN, however, numerous nerve fibers contained TRPV1-, TRPV2-, P2X3-, and PV-IR. The present study suggests that TRPV1-, TRPV2-, P2X3-, and PV-IR neurons in the human nodose ganglion innervate the pharynx and epiglottis through the PB and SLN. These neurons may respond to chemical, thermal, and mechanical stimuli during respiration and swallowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Carobi C (1996) A quantitative investigation of the effects of neonatal capsaicin treatment on vagal afferent neurons in the rat. Cell Tissue Res 283:305–311

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    Article  CAS  PubMed  Google Scholar 

  • Celio MR (1990) Calbindin D-28 k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  CAS  PubMed  Google Scholar 

  • Ebihara S, Kohzuki M, Sumi Y, Ebihara T (2011) Sensory stimulation to improve swallowing reflex and prevent aspiration pneumonia in elderly dysphagic people. J Pharmacol Sci 115:99–104

    Article  CAS  PubMed  Google Scholar 

  • Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11:946–958

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Helke CJ (1995) Parvalbumin and calbindin D-28 k in vagal and glossopharyngeal sensory neurons of the rat. Brain Res 675:337–341

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Sugimoto T (1997) Parvalbumin- and calbindin D-28 k-immunoreactive innervation of oro-facial tissues in the rat. Exp Neurol 146:414–418

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Sugimoto T (2000) Vanilloid receptor 1-like receptor-immunoreactive primary sensory neurons in the rat trigeminal nervous system. Neuroscience 101:719–725

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Sugimoto T (2001) VR1-immunoreactive primary sensory neurons in the rat trigeminal ganglion. Brain Res 890:184–188

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Sugimoto T (2002) Co-expression of VRL-1 and calbindin D-28 k in the rat sensory ganglia. Brain Res 924:109–112

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Sugimoto T (2003) The co-expression of VR1 and VRL-1 in the rat vagal sensory ganglia. Brain Res 980:293–296

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Deguchi T, Nakago T, Jacobowitz DM, Sugimoto T (1994) Parvalbumin, calretinin and carbonic anhydrase in the trigeminal and spinal primary neurons of the rat. Brain Res 655:241–245

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Xiao C, He YF, Sugimoto T (1996) Parvalbumin-immunoreactive nerve endings in the periodontal ligaments of rat teeth. Arch Oral Biol 41:1087–1090

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Terayama R, Yamaai T, Yan Z, Sugimoto T (2007) Brain-derived neurotrophic factor-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia; co-expression with other neurochemical substances. Brain Res 1155:93–99

    Article  CAS  PubMed  Google Scholar 

  • Kou YR, Lin YS, Ho CY, Lin CZ (1999) Neonatal capsaicin treatment alters immediate ventilatory responses to inhaled wood smoke in rats. Respir Physiol 116:115–123

    Article  CAS  PubMed  Google Scholar 

  • Lang J, Nachbaur S, Fischer K, Vogel E (1987) The superior laryngeal nerve and the superior laryngeal artery. Acta Anat (Basel) 130:309–318

    Article  CAS  Google Scholar 

  • Lee LY, Ni D, Hayes D Jr, Lin RL (2011) TRPV1 as a cough sensor and its temperature-sensitive properties. Pulm Pharmacol Ther 24:280–285

    Article  CAS  PubMed  Google Scholar 

  • Liu BY, Tsai TL, Ho CY, Lu SH, Lai CJ, Kou YR (2013) Role of TRPA1 and TRPV1 in the ROS-dependent sensory irritation of superior laryngeal capsaicin-sensitive afferents by cigarette smoke in anesthetized rats. Pulm Pharmacol Ther 26:364–372

    Article  CAS  PubMed  Google Scholar 

  • Mathison R, Davison JS (1993) Capsaicin sensitive nerves in the jejunum of Nippostrongylus brasiliensis-sensitized rats participate in a cardiovascular depressor reflex. Naunyn Schmiedebergs Arch Pharmacol 348:638–642

    Article  CAS  PubMed  Google Scholar 

  • Meller ST, Lewis SJ, Ness TJ, Brody MJ, Gebhart GF (1991) Neonatal capsaicin treatment abolishes the nociceptive responses to intravenous 5-HT in the rat. Brain Res 542:212–218

    Article  CAS  PubMed  Google Scholar 

  • Michael GJ, Priestley JV (1999) Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J Neurosci 19:1844–1854

    CAS  PubMed  Google Scholar 

  • O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451:193–203

    Article  PubMed  Google Scholar 

  • Ruan T, Lin YS, Lin KS, Kou YR (2006) Mediator mechanisms involved in TRPV1 and P2X receptor-mediated, ROS-evoked bradypneic reflex in anesthetized rats. J Appl Physiol 101:644–654

    Article  CAS  PubMed  Google Scholar 

  • Sasaki R, Sato T, Yajima T, Kano M, Suzuki T, Ichikawa H (2013) The distribution of TRPV1 and TRPV2 in the rat pharynx. Cell Mol Neurobiol 33(5):707–714

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Hirano M (1997) Langerhans cells in the larynx and the hypopharynx. Kurume Med J 44:297–303

    Article  CAS  PubMed  Google Scholar 

  • Selçuk B, Uysal H, Aydogdu I, Akyuz M, Ertekin C (2007) Effect of temperature on electrophysiological parameters of swallowing. J Rehabil Res Dev 44:373–380

    Article  PubMed  Google Scholar 

  • Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ichikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, D., Sato, T., Urata, Y. et al. Distribution of TRPVs, P2X3, and Parvalbumin in the Human Nodose Ganglion. Cell Mol Neurobiol 34, 851–858 (2014). https://doi.org/10.1007/s10571-014-0062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0062-9

Keywords

Navigation