Skip to main content

Advertisement

Log in

Glutaraldehyde-assisted crosslinking in regenerated cellulose films toward high dielectric and mechanical properties

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Developing the green dielectric materials satisfies the requirement of the sustainable development of society and economics. In this work, glutaraldehyde (GA)-assisted crosslinking strategy was developed to prepare the crosslinked regenerated cellulose (CRC) films, and the effects of different crosslinking methods, including crosslinking steps, concentration of GA solution and crosslinking time, on dielectric and mechanical properties of the CRC films were systematically investigated. Microstructure and morphology characterizations show that compared with the common RC films, the CRC films show apparently reduced defects and enhanced intermolecular interaction. At GA concentration of 6 vol% and crosslinking time of 30 min, the CRC film shows the lowest dielectric loss (0.03 at 1000 Hz, 92.3% smaller than RC film) and the highest breakdown strength (336.55 MV m−1, 364.3% higher than RC film), and simultaneously, the film shows the high tensile strength of 76.8 MPa and excellent tensile modulus of 6.08 GPa, about 240.9% and 104% higher than those of the RC film, respectively. This work provides new insight in tailoring the dielectric and mechanical properties of the cellulose films through constructing the crosslinking structure, which is of great significance for the fabrication of the high-performance cellulose-based dielectric materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aburabie J, Lalia B, Hashaikeh R (2021) Proton conductive, low methanol crossover cellulose-based membranes. Membranes 11:539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almalki SJ, Nadarajah S (2014) Modifications of the Weibull distribution: a review. Reliab Eng Syst Saf 124:32–55

    Article  Google Scholar 

  • Arantes ACC, Silva LE, Wood DF, Almeida CD, Tonoli GHD, de Oliveira JE, da Silva JP, Williams TG, Orts WJ, Bianchi ML (2019) Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Carbohydr Polym 207:100–107

    Article  CAS  PubMed  Google Scholar 

  • Bonardd S, Moreno-Serna V, Kortaberria G, Diaz DD, Leiva A, Saldias C (2019) Dipolar glass polymers containing polarizable groups as dielectric materials for energy storage applications. A minireview. Polymers 11:317

    Article  PubMed Central  CAS  Google Scholar 

  • Croll DC, Schroeder LR (2004) Synthesis of a ring-rigid disaccharide model for studies of alkaline chain cleavage in cellulose. J Wood Chem Technol 24:27–38

    Article  CAS  Google Scholar 

  • Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and aadsorption kinetics. Langmuir 24:8036–8044

    Article  CAS  PubMed  Google Scholar 

  • Dan ZK, Jiang JY, Qian JF, Shen ZH, Li M, Nan CW, Shen Y (2019) A ferroconcrete-like all-organic nanocomposite exhibiting improved mechanical property, high breakdown strength, and high energy efficiency. Macromol Mater Eng 304:1900433

    Article  CAS  Google Scholar 

  • Djahedi C, Bergenstråhle-Wohlert M, Berglund LA, Wohlert J (2016) Role of hydrogen bonding in cellulose deformation: the leverage effect analyzed by molecular modeling. Cellulose 23:2315–2323

    Article  CAS  Google Scholar 

  • Fras L, Johansson LS, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Analysis of the oxidation of cellulose fibres by titration and XPS. Colloid Surface A 260:101–108

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • He P, Cao MS, Cai YZ, Shu JC, Cao WQ, Yuan J (2020) Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 157:80–89

    Article  CAS  Google Scholar 

  • He J, Yin Y, Xu M, Wang P, Yang Z, Yang Q, Shi Z, Xiong C (2021) Regenerated Cellulose/NaNbO3 nanowire dielectric composite films with superior discharge energy density and efficiency. ACS Appl Energy Mater 4:8150–8157

    Article  CAS  Google Scholar 

  • Hou T, Guo K, Wang Z, Zhang X-F, Feng Y, He M, Yao J (2019) Glutaraldehyde and polyvinyl alcohol crosslinked cellulose membranes for efficient methyl orange and Congo red removal. Cellulose 26:5065–5074

    Article  CAS  Google Scholar 

  • Joyce DM, Venkat N, Ouchen F, Singh KM, Smith SR, Grote JG (2013) DNA hybrid dielectric film devices for energy storage and bioelectronics applications. Paper presented at: conference on nanobiosystems-processing, Characterization, and Applications VI San Diego

  • Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwodiauer R, Graz I, Bauer-Gogonea S et al (2013) An ultra-lightweight design for imperceptible plastic electronics. Nature 499:458–463

    Article  CAS  PubMed  Google Scholar 

  • Lao J, Xie H, Shi Z, Li G, Li B, Hu G-H, Yang Q, Xiong C (2018a) Flexible regenerated cellulose/boron nitride nanosheehigh-temperature dielectric nanocomposite films with high energy density and breakdown strength. ACS Sustain Chem Eng 6:7151–7158

    Article  CAS  Google Scholar 

  • Li Q, Chen L, Gadinski MR, Zhang SH, Zhang GZ, Li HY, Haque A, Chen LQ, Jackson TN, Wang Q (2015) Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523:576–579

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yao FZ, Liu Y, Zhang GZ, Wang H, Wang Q (2018) High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Sci 48:219–243

    Article  CAS  Google Scholar 

  • Liu SH, Xue SX, Zhang WQ, Zhai JW, Chen GH (2014) Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J Mater Chem A 2:18040–18046

    Article  CAS  Google Scholar 

  • Liu LM, Qu JL, Gu AJ, Wang BH (2020) Percolative polymer composites for dielectric capacitors: a brief history, materials, and multilayer interface design. J Mater Chem A 8:18515–18537

    Article  CAS  Google Scholar 

  • Liu QL, Yu HT, Mu TC, Xue ZM, Xu F (2021) Robust superbase-based emerging solvents for highly efficient dissolution of cellulose. Carbohydr Polym 272:118454

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Xie X, Wang WY, Qi XD, Lei YZ, Yang JH, Wang Y (2019) ZnO nanoparticles-tailored GO dispersion toward flexible dielectric composites with high relative permittivity, low dielectric loss and high breakdown strength. Compos Part A Appl Sci Manuf 124:105489

    Article  CAS  Google Scholar 

  • Madusanka N, Shivareddy SG, Hiralal P, Eddleston MD, Choi Y, Oliver RA, Amaratunga GAJ (2016) Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants. Nanotechnology 27:321

    Article  CAS  Google Scholar 

  • Madusanka N, Shivareddy SG, Eddleston MD, Hiralal P, Oliver RA, Amaratunga GAJ (2017) Dielectric behaviour of montmorillonite/cyanoethylated cellulose nanocomposites. Carbohydr Polym 172:315–321

    Article  CAS  PubMed  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Morsi MA, Abdelaziz M, Oraby AH, Mokhles I (2019) Structural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate. J Phys Chem Solids 125:103–114

    Article  CAS  Google Scholar 

  • Movagharnezhad N, Moghadam PN (2017) Hexamethylene diamine/carboxymethyl cellulose grafted on magnetic nanoparticles for controlled drug delivery. Polym Bull 74:4645–4658

    Article  CAS  Google Scholar 

  • Pereira MBB, França DB, Araújo RC, Silva Filho EC, Rigaud B, Fonseca MG, Jaber M (2020) Amino hydroxyapatite/chitosan hybrids reticulated with glutaraldehyde at different pH values and their use for diclofenac removal. Carbohydr Polym 236:116036

    Article  CAS  PubMed  Google Scholar 

  • Prateek T, V.K., and Gupta, R.K. (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    Article  CAS  PubMed  Google Scholar 

  • Sarban R, Jones RW, Mace BR, Rustighi E (2011) A tubular dielectric elastomer actuator: fabrication, characterization and active vibration isolation. Mech Syst Signal Proc 25:2879–2891

    Article  Google Scholar 

  • Seddiqi H, Oliaei E, Honarkar H, Jin J, Geonzon LC, Bacabac RG, Klein-Nulend J (2021) Cellulose and its derivatives: towards biomedical applications. Cellulose 28:1893–1931

    Article  CAS  Google Scholar 

  • Song Y, Wu T, Bao J, Xu M, Yang Q, Zhu L, Shi Z, Hu GH, Xiong C (2022) Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting. Carbohydr Polym 288:119407

    Article  CAS  PubMed  Google Scholar 

  • Takechi S, Teramoto Y, Nishio Y (2016) Improvement of dielectric properties of cyanoethyl cellulose via esterification and film stretching. Cellulose 23:765–777

    Article  CAS  Google Scholar 

  • Tao J, Cao SA, Liu W, Deng YL (2019) Facile preparation of high dielectric flexible films based on titanium dioxide and cellulose nanofibrils. Cellulose 26:6087–6098

    Article  CAS  Google Scholar 

  • Wang FJ, Wang MH, Shao ZQ (2018) Dispersion of reduced graphene oxide with montmorillonite for enhancing dielectric properties and thermal stability of cyanoethyl cellulose nanocomposites. Cellulose 25:7143–7152

    Article  CAS  Google Scholar 

  • Wang S, Chen H, Zhou X, Tian Y, Lin C, Wang W, Zhou K, Zhang Y, Lin H (2020) Microplastic abundance, distribution and composition in the mid-west Pacific Ocean. Environ Pollut 264:114125

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Song Y, Shi Z, Liu D, Chen S, Xiong C, Yang Q (2021) High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting. Nano Energy 80:105541

    Article  CAS  Google Scholar 

  • Yang Q, Zhang C, Shi Z, Wang J, Xiong C, Saito T, Isogai A (2018) Luminescent and transparent nanocellulose films containing europium carboxylate groups as flexible dielectric materials. ACS Appl Nano Mater 1:4972–4979

    Article  CAS  Google Scholar 

  • Yin YN, Zhang CG, Yu WC, Kang GH, Yang QL, Shi ZQ, Xiong CX (2020) Transparent and flexible cellulose dielectric films with high breakdown strength and energy density. Energy Storage Mater 26:105–111

    Article  Google Scholar 

  • Yin YN, He JC, Zhang CG, Chen JS, Wu JX, Shi ZQ, Xiong CX, Yang QL (2021) Flexible cellulose/alumina (Al2O3) nanocomposite films with enhanced energy density and efficiency for dielectric capacitors. Cellulose 28:1541–1553

    Article  CAS  Google Scholar 

  • Yu H, Duan J, Du W, Xue S, Sun J (2017) China’s energy storage industry: develop status, existing problems and countermeasures. Renew Sustain Energy Rev 71:767–784

    Article  Google Scholar 

  • Yuan MX, Zhang G, Li B, Chung TCM, Rajagopalan R, Lanagan MT (2020) Thermally stable low-loss polymer dielectrics enabled by attaching cross-linkable antioxidant to polypropylene. ACS Appl Mater Interfaces 12:14154–14164

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Deng L, Yao Y, Sun R, Xu J, Wong C-P (2016) Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C 4:6037–6044

    Article  CAS  Google Scholar 

  • Zhang C, Li PP, Zhang YJ, Lu F, Li WW, Kang HL, Xiang JF, Huang Y, Liu RG (2016) Hierarchical porous structures in cellulose: NMR relaxometry approach. Polymer 98:237–243

    Article  CAS  Google Scholar 

  • Zhang CG, Yin YN, Yang QL, Shi ZQ, Hu GH, Xiong CX (2019) Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor. ACS Sustain Chem Eng 7:10641–10648

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Y, Zhou Q, Zhang XL, Guo SY (2020) Symmetrical “sandwich” polybutadiene film with high-frequency low dielectric constants, ultralow dielectric loss, and high adhesive strength. Ind Eng Chem Res 59:1142–1150

    Article  CAS  Google Scholar 

  • Zhao D, Huang JC, Zhong Y, Li K, Zhang LN, Cai J (2016) High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv Funct Mater 26:6279–6287

    Article  CAS  Google Scholar 

  • Zhao YH, Guo QW, Wu S, Meng G, Zhang WM (2019) Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation. Mech Syst Signal Proc 134:106367

    Article  Google Scholar 

  • Zhao DW, Zhu Y, Cheng WK, Chen WS, Wu YQ, Yu HP (2021) Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater 33:2000619

    Article  CAS  Google Scholar 

  • Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SEM characterizations were supported by the Analytical and Testing Center of Southwest Jiaotong University. Thanks to Mr. Zhen-jie Lu (Southwest Jiaotong University) for the help with our AFM tests.

Funding

This work was financially supported by the National Natural Science Foundation of China (51673159), the Youth Science and Technology Innovation Team of Sichuan Province of Functional Polymer Composites (2021JDTD0009) and the Sichuan Science and Technology Program (2020YFG0099).

Author information

Authors and Affiliations

Authors

Contributions

MG: Conceptualization, Methodology, Data curation, Formal analysis, Writing—original draft, Writing—review & editing. XX: Formal analysis, Investigation, Visualization. TH: Investigation, Discussion. NZ Investigation, Discussion, Funding acquisition, Writing—review & editing. YW: Conceptualization, Investigation, Funding acquisition, Project administration, Supervision, Writing—review & editing.

Corresponding authors

Correspondence to Nan Zhang or Yong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 621 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Mh., Xie, X., Huang, T. et al. Glutaraldehyde-assisted crosslinking in regenerated cellulose films toward high dielectric and mechanical properties. Cellulose 29, 8177–8194 (2022). https://doi.org/10.1007/s10570-022-04785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04785-2

Keywords

Navigation