Skip to main content
Log in

Preparation of 2,3-dialdehyde microcrystalline cellulose particles crosslinked with ε-poly-L-lysine and their antibacterial activity

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A series of dialdehyde microcrystalline cellulose (DAMC) particles crosslinked with EPL (EPL-DAMCs) was successfully prepared by reacting DAMC with varying amounts of ε-Poly-L-lysine (EPL). Based on the excellent antibacterial property of ε-poly-L-lysine (EPL), the obtained EPL-DAMCs have a broad-spectrum antibacterial activity, and their physicochemical and antibacterial activities were also investigated. Fourier -transform infrared spectroscopy results demonstrated the formation of Schiff base between the aldehyde groups in DAMC and amino groups of EPL. The DAMC particles showed an aggregated structure of fibres. Among all DAMC crosslinked with EPL (EPL-DAMCs), the EPL-DAMC-4, with a lysine content of 0.46 ± 0.08 mg/g, showed the highest antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhimurium, with the minimum inhibitory concentration (MIC) of 3.75, 15.0, 7.5 and 3.75 mg/mL, respectively. Compared with DAMC, the EPL-DAMC-4 exhibited the better inhibition effect and antimicrobial stability on the tested strains. These findings suggested that EPL-DAMCs might be used as antimicrobial biomaterial and have great potential in food packaging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhtar M, Dickinson E (2007) Whey protein-maltodextrin conjugates as emulsifying agents: an alternative to gum Arabic. Food Hydrocoll 21(4):607–616

    Article  CAS  Google Scholar 

  • Bansal M, Chauhan GS, Kaushik A, Sharma A (2016) Extraction and functionalization of bagasse cellulose nanofibres to schiff-base based antimicrobial membranes. Int J Biol Macromol 91:887–894

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang AJ, Yuan PX, Luo X, Xue Y, Feng JJ (2019) Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens Bioelectron 132:294–301

    Article  CAS  PubMed  Google Scholar 

  • Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose-Survey of the most recent achievements. Carbohydr Polym 93:207–215

    Article  CAS  PubMed  Google Scholar 

  • Fürsatz M, Skog M, Sivlér P, Palm E, Aronsson C, Skallberg A, Greczynski G, Khalaf H, Bengtsson T, Aili D (2018) Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. Biomed Mater 13:2–11

    Article  Google Scholar 

  • Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibac-terial properties to bacterial cellulose nanofibers via immobilizing ε-polylysine nanocoatings. Food Hydrocoll 36:204–211

    Article  CAS  Google Scholar 

  • Ge HH, Zhang LM, Xu M, Cao J, Kang CC (2018) Preparation of dialdehyde cellulose and its antibacterial activity. Adv Appl Biotechnol 444:545–553

    Article  Google Scholar 

  • Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J (2018) A review of natural polysaccharides for drug delivery applications: special focus on cellulose, starch and glycogen. Biomed Pharmacother 107:96–108

    Article  CAS  PubMed  Google Scholar 

  • Hassan M, Javadzadeh Y, Lotfipour F, Badomchi R (2011) Determination of comparative minimum inhibitory concentration (MIC) of bacteriocins produced by enterococci for selected isolates of multi-antibiotic resistant enterococcus spp. Adv Pharm Bull 1(2):75–79

    PubMed  PubMed Central  Google Scholar 

  • Hou Q, Liu W, Liu Z, Duan B, Bai L (2008) Characteristics of antimicrobial fibers prepared with wood periodate oxycellulose. Carbohydr Polym 74:235–240

    Article  CAS  Google Scholar 

  • Janjic S, Kostic M, Vucinic V, Dimitrijevic S, Popovic K, Ristic M, Skundric P (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr Polym 78:240–246

    Article  CAS  Google Scholar 

  • Jiang G, Yuan Y, Wang B, Yin X, Mukuze KS, Huang W, Zhang Y, Wang H (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19(4):1075–1083

    Article  CAS  Google Scholar 

  • Jiang XL, Yang Z, Peng YF, Han BQ, Li ZY, Li XH, Liu WS (2016) Preparation, characterization and feasibility study of dialdehyde carboxymethyl cellulose as a novel crosslinking reagent. Carbohydr Polym 137:632–641

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Li J, Zeng J, Gao W, Xu J, Cheng Z, Chen K, Wang B (2019) A water solvent-assisted condensation polymerization strategy of superhydrophobic lignocellulosic fibers for efficient oil/water separation. J Mater Chem 7:16447–16457

    Article  CAS  Google Scholar 

  • Kanth SV, Ramaraj A, Rao JR, Nair BU (2009) Stabilization of type I collagen usingdialdehyde cellulose. Process Biochem 44:869–874

    Article  CAS  Google Scholar 

  • Kedzior SA, Zoppe JO, Berry RM, Cranston ED (2018) Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Curr Opin Solid State Mater Sci 12:2–6. https://doi.org/10.1016/j.cossms.2018.11.005

    Article  CAS  Google Scholar 

  • Keshk SMAS, Ramadan AM, Bondock S (2015) Physicochemical characterization of novel schiff bases derived from developed bacterial cellulose 2,3-dialdehyde. Carbohydr Polym 127:246–251

    Article  CAS  PubMed  Google Scholar 

  • Kim UJ, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369(1):79–85

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation ofcrystalline cellulose. Biomacromol 1:488–492

    Article  CAS  Google Scholar 

  • Kim UJ, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017) Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr Polym 163:34–42

    Article  CAS  PubMed  Google Scholar 

  • Laura BD, Jesús MG, Eduardo PL, David RR, José LR, José CG, María CRS, Pablo MR (2019) Antifungal agents based on chitosan oligomers, ε-polylysine and streptomyces spp secondary metabolites against three botryosphaeriaceae species. Antibiotics 8(99):1–13. https://doi.org/10.3390/antibiotics8030099

    Article  CAS  Google Scholar 

  • Li H, Wu B, Mu C, Lin W (2011) Concomitant degradation in peri-odate oxidation of carboxymethyl cellulose. Carbohydr Polym 84:881–886

    Article  CAS  Google Scholar 

  • Li YQ, Han Q, Feng JL, Tian WL, Mo HZ (2014) Antibacterial characteristics and mechanisms of ε-poly-lysine against Escherichia coli and Staphylococcus aureus. Food Control 43:22–27

    Article  CAS  Google Scholar 

  • Li J, Kang L, Wang B, Chen K, Tian X, Ge Z, Zeng J, Xu J, Gao W (2019) Controlled release and long-term antibacterial activity of dialdehyde nanofibrillated cellulose/silver nanoparticle composites. ACS Sustain Chem Eng 7(1):1146–1158

    Article  CAS  Google Scholar 

  • Liang C, Yuan F, Liu F, Wang Y, Gao Y (2014) Structure and antimicrobial mechanism of ɛ-polylysine-chitosan conjugates through maillard reaction. Int J Biol Macromol 70:427–434

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Li Q, Chen W, Yu H (2014) Composite aerogels based on dialdehydenanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138

    Article  CAS  Google Scholar 

  • Luo CY, Zeng ZL, Gong DM, Zhao CY, Liang QF, Zeng C (2014) Evaluation of monolaurin from camphor tree seeds for controlling food spoilage fungi. Food Control 46:488–494

    Article  CAS  Google Scholar 

  • Maekawa E, Koshijima T (1990) Preparation and characterisation of hydroxamic acid derivatives and its metal complexes derived from cellulose. J Appl Polym Sci 40:1601–1613

    Article  CAS  Google Scholar 

  • Marcó A, Rubio R, Companó R, Casals I (2002) Comparison of the kjeldahl method and a combustion method for total nitrogen determination in animal feed. Talanta 57(5):1019–1026

    Article  PubMed  Google Scholar 

  • Miller AF, Donald AM (2003) Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromol 4(3):510–517

    Article  CAS  Google Scholar 

  • Mishra D, Jyotshna SA, Chanda D, Shanker K, Khar P (2019) Potential of dialdehyde cellulose for sustained release of oxytetracycline: a pharmacokinetic study. Int J Biol Macromol 136:97–105

    Article  CAS  PubMed  Google Scholar 

  • MohamedMohamed AAL, Hassabo AG, Shaarawy S, Hebeish A (2017) Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and AgNPs in cotton structure pre-treated with periodate. Carbohydr Polym 178:251–259

    Article  Google Scholar 

  • Mou KW, Li JJ, Wang YY, Cha RT, Jiang XY (2017) 2, 3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. J Mater Chem B 5:7876–7884

    Article  CAS  PubMed  Google Scholar 

  • Nada AMA, Hassan ML (2000) Thermal behavior of cellulose and some cellulose derivatives. Polym Degrad Stab 67(1):111–115

    Article  CAS  Google Scholar 

  • Nikolic T, Kostic M, Praskalo J, Pejic B, Petronijevic Z, Skundric P (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr Polym 82:976–981

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  PubMed  Google Scholar 

  • Perry ID, Nguyen T, Sherinad V, Love TM, Miller RK, Krishnanb L, Shawn PM (2019) Analysis of the capacity of salmonella enterica typhimurium to infect the human Placenta. Placenta 83:43–52

    Article  PubMed  Google Scholar 

  • Pietrucha K, Safandowska M (2015) Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem 50(12):2105–2111

    Article  CAS  Google Scholar 

  • Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14:124–133

    Article  Google Scholar 

  • Rol F, Belgacem MN, Gandini A, Bras J (2018) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264

    Article  Google Scholar 

  • Salama HE, Saad GR, Sabaa MW (2015) Synthesis, characterization and biological activity of schiff bases based on chitosan and arylpyrazole moiety. Int J Biol Macromol 79:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39(5):639–644

    Article  CAS  Google Scholar 

  • Seyyed AN, Nahid H, Jorge ARN (2020) Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. Int J Biol Macromol 154:1215–1226

    Article  Google Scholar 

  • Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–a review. Biotechnol Rep 3(21):1–5. https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  • Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour Technol 97(9):1148–1159

    Article  CAS  PubMed  Google Scholar 

  • Sirviö J, Hyvakko U, Liimatainen H, Niinimäki J, Hormi O (2011) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83(3):1293–1297

    Article  Google Scholar 

  • Song L, Sang Y, Cai L, Shi YC, Farrah SR, Baney RH (2010) The effect of cooking on the antibacterial activity of the dialdehyde starch suspensions. Starch Starke 62(9):458–466

    Article  CAS  Google Scholar 

  • Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Thiangtham S, Runt J, Manuspiya H (2019) Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydr Polym 208:314–322

    Article  CAS  PubMed  Google Scholar 

  • Veelaert S, de Wit D, Gotlied KF, Verhe R (1997) Chemical and physicaltransitions of periodate oxidized potato starch in water. Carbohydr Polym 33:153–162

    Article  CAS  Google Scholar 

  • Wu R, He B, Zhao G, Qian L, Li X (2013) Immobilization of pectinase on oxidized pulp fiber and its application in whitewater treatment. Carbohydr Polym 97:523–529

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Teng C, Liu B, Tian HF, Wang JG (2018) Characterization and long term antimicrobial activity of the nisin anchored cellulose films. Int J Biol Macromol 113:487–493

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Sun J, Lu Y, Wu T, Pang J, Hu Y (2019a) In situ self-assembly chitosan/ε-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int J Biol Macromol 132:385–392

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Li Q, Zhang X, Li Y, Li B, Liu S (2019b) Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. Int J Biol Macromol 128:673–680

    Article  CAS  PubMed  Google Scholar 

  • Xu QH, Jin LQ, Wang YL, Chen H, Qin MH (2019a) Synthesis of silver nanoparticles using dialdehyde cellulose nanocrystal as a multi-functional agent and application to antibacterial paper. Cellulose 26:1309–1321

    Article  CAS  Google Scholar 

  • Xu YJ, Shi Y, Lei F, Dai L (2019b) A novel and green cellulose-based Schiff base-Cu (II) complex and its excellent antibacterial activity. Carbohydr Polym 230:115671

    Article  PubMed  Google Scholar 

  • Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li JF (2017) Self-assembled cellulose materials for biomedicine: a review. Carbohydr Polym 181:264–274

    Article  PubMed  Google Scholar 

  • Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhou MR (2007) Methods for data process of near infrared spectroscopy analysis. Infrared Techn 29(6):345–348. https://doi.org/10.1016/S1673-8527(07)60052-6

    Article  Google Scholar 

  • Zhang L, Li R, Dong F, Tian A, Li Z, Dai Y (2015) Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-l-lysine. Food Chem 166:107–114

    Article  PubMed  Google Scholar 

  • Zhang L, Ge H, Xu M, Cao J, Dai Y (2017) Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 24(5):2287–2298

    Article  CAS  Google Scholar 

  • Zhang L, Zhang Q, Zheng Y, He Z, Guan P, He X, Hui L (2018a) Study of schiff base formation between dialdehyde cellulose and proteins, and its application for the deproteinization of crude polysaccharide extracts. Ind Crop Prod 112:532–540

    Article  CAS  Google Scholar 

  • Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J (2018b) Antimicrobial activity and action mechanism of triglycerol monolaurate on common foodborne pathogens. Food Control 98:113–119

    Article  Google Scholar 

  • Zhang SL, Kai CC, Liu BF, Zhang SL, Wei W, Xu XL, Zhou ZW (2019) Preparation, characterization and antibacterial properties of cellulose membrane containing N-halamine. Cellulose 26:5621–5633

    Article  CAS  Google Scholar 

  • Zhao R, Wang H, Ji T, Anderson G, Nie G, Zhao Y (2015) Biodegradable cationic ε-poly-L-lysine-conjugated polymeric nanoparticles as a new effective antibacterial agent. Sci Bull 60(2):216–226

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Project No. 31771952). The authors thank Professor Hongjiang Yang (College of Bioengineering, Tianjin University of Science and Technology, China) for his helpful assistance in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Li, Y., Zhang, L. et al. Preparation of 2,3-dialdehyde microcrystalline cellulose particles crosslinked with ε-poly-L-lysine and their antibacterial activity. Cellulose 28, 2833–2847 (2021). https://doi.org/10.1007/s10570-021-03692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03692-2

Keywords

Navigation