Skip to main content
Log in

Biodegradable cationic ε-poly-L-lysine-conjugated polymeric nanoparticles as a new effective antibacterial agent

一种新型高效生物可降解ε-多聚赖氨酸修饰阳离子聚合物抗菌剂的合成与性能研究

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

Biocompatible and biodegradable ε-poly-l-lysine (EPL)/poly (ε-caprolactone) (PCL) copolymer was designed and synthesized. The amphiphilic EPL–PCL copolymer could easily self-assembled into monodispersed nanoparticles (NPs), which showed a broad-spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. Interestingly, the antibacterial efficacy of the novel NPs is more potent than the cationic peptide EPL. To explore the underlying mechanism of the biodegradable cationic NPs, various possible antibacterial pathways have been validated. The NPs have been found that they can disrupt bacterial walls/membranes and induce the increasing in reactive oxygen species and alkaline phosphatase levels. More importantly, the self-assembled NPs induced the changes in bacterial osmotic pressure, resulting in cell invagination to form holes and cause the leakage of cytoplasm. Taken together, our results suggest that the EPL–PCL NPs can be further developed to be a promising antimicrobial agent to treat infectious diseases as surfactants and emulsifiers to enhance drug encapsulation efficiency and antimicrobial activity.

摘要

目前临床上使用的大多数抗生素杀菌或抑菌的主要机制为:选择性的作用于细菌细胞核酸和蛋白合成系统的特定环节,妨碍细菌生命活动,导致细菌死亡。然而,细菌形态结构完整性仍然保持,导致细菌产生耐药性。最近研究发现大肠杆菌和金黄色葡萄球菌感染是一些慢性疾病发生的重要因素。纳米颗粒能够选择性的作用于微生物表面,破坏细菌结构完整性,抑制细菌耐药性的产生。本文设计并合成一种生物相容性好且生物可降解ε-多聚赖氨酸修饰阳离子聚合物(EPL-PCL)。这种多聚物能够自主装形成单分散的纳米颗粒,且对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌具有广谱的抗菌活性。相比于ε-多聚赖氨酸,EPL-PCL纳米颗粒具有更强的抗菌活性。进一步研究发现,EPL-PCL纳米颗粒抗菌作用的主要机制是:(1)带正电的EPL-PCL纳米颗粒与带负电的细菌表面相互作用并穿透细胞壁和细胞膜,破坏细菌表面完整性,抑制细菌耐药性的生成;(2)EPL-PCL纳米颗粒暴露显著提高细菌内ROS水平;(3)ROS水平升高显著的破坏细菌细胞代谢,例如提高碱性磷酸酶活性破坏细菌磷的稳态平衡。因此,本文合成的可降解ε-多聚赖氨酸修饰阳离子纳米聚合物可以作为一种有效且广谱的抗菌剂,特别是用于病原菌感染的疾病。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nguyen GC, Patel H, Chong RY (2010) Increased prevalence of and associated mortality with methicillin-resistant Staphylococcus aureus among hospitalized IBD patients. Am J Gastroenterol 105:371–377

    Article  Google Scholar 

  2. Small CLN, Reid-Yu SA, McPhee JB et al (2013) Persistent infection with Crohn’s disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun 4:1957

    Article  Google Scholar 

  3. Kalghatgi S, Spina CS, Costello JC et al (2013) Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med 5:192ra185

  4. Kohanski MA, Dwyer DJ, Hayete B et al (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810

    Article  Google Scholar 

  5. Liu L, Xu K, Wang H et al (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4:457–463

    Article  Google Scholar 

  6. Nederberg F, Zhang Y, Tan JP et al (2011) Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem 3:409–414

    Article  Google Scholar 

  7. Hook AL, Chang CY, Yang J et al (2012) Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol 30:868–875

    Article  Google Scholar 

  8. Cui Y, Zhao Y, Tian Y et al (2013) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333

    Article  Google Scholar 

  9. Chen H, Wang B, Gao D et al (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9:2735–2746

    Article  Google Scholar 

  10. Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8:1–16

    Article  Google Scholar 

  11. Regiel A, Irusta S, Kyziol A et al (2013) Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24:015101

    Article  Google Scholar 

  12. Misra R, Acharya S, Dilnawaz F et al (2009) Sustained antibacterial activity of doxycycline-loaded poly(d, l-lactide-co-glycolide) and poly(ε-caprolactone) nanoparticles. Nanomedicine 4:519–530

    Article  Google Scholar 

  13. Kim SY, Lee YM (2001) Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers. Biomaterials 22:1697–1704

    Article  Google Scholar 

  14. Kim WJ, Basavaraja C, Thinh PX et al (2013) Structural characterization and DC conductivity of honeycomb-patterned poly(ε-caprolactone)/gold nanoparticle-reduced graphite oxide composite films. Mater Lett 90:14–18

    Article  Google Scholar 

  15. Park EK, Lee SB, Lee YM (2005) Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26:1053–1061

    Article  Google Scholar 

  16. Jones DS, Djokic J, Gorman SP (2005) The resistance of polyvinylpyrrolidone–Iodine–poly (ε-caprolactone) blends to adherence of Escherichia coli. Biomaterials 26:2013–2020

    Article  Google Scholar 

  17. Zhou C, Li P, Qi X et al (2011) A photopolymerized antimicrobial hydrogel coating derived from ε-poly-l-lysine. Biomaterials 32:2704–2712

    Article  Google Scholar 

  18. Radovic-Moreno AF, Lu TK, Puscasu VA et al (2012) Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6:4279–4287

    Article  Google Scholar 

  19. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  Google Scholar 

  20. Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour Technol 97:1148–1159

    Article  Google Scholar 

  21. Shima S, Matsuoka H, Iwamoto T et al (1984) Antimicrobial action of ε-poly-l-lysine. J Antibiot 37:1449–1455

    Article  Google Scholar 

  22. Food and Drug Administration (1988) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Fed Regist 53:11247–11251

    Google Scholar 

  23. Brandt AL, Castillo A, Harris KB et al (2010) Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. J Food Sci 75:557–563

    Article  Google Scholar 

  24. Hamano Y (2011) Occurrence, biosynthesis, biodegradation, and industrial and medical applications of a naturally occurring ε-poly-l-lysine. Biosci Biotechnol Biochem 75:1226–1233

    Article  Google Scholar 

  25. Eom KD, Park SM, Tran HD et al (2007) Dendritic α, ε-poly(l-lysine)s as delivery agents for antisense oligonucleotides. Pharm Res 24:1581–1589

    Article  Google Scholar 

  26. Yu H, Huang Y, Huang Q (2010) Synthesis and characterization of novel antimicrobial emulsifiers from ε-polylysine. J Agric Food Chem 58:1290–1295

    Article  Google Scholar 

  27. Zheng J, Xie S, Lin F et al (2013) 4-Dibenzocyclooctynol (DIBO) as an initiator for poly(ε-caprolactone): copper-free clickable polymer and nanofiber-based scaffolds. Polym Chem 4:2215

    Article  Google Scholar 

  28. Choi WY, Kim HE, Koh YH (2012) Production, mechanical properties and in vitro biocompatibility of highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds. J Porous Mater 20:701–708

    Article  Google Scholar 

  29. Yang H, Sun C, Fan Z et al (2012) Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci Rep 2:847

    Google Scholar 

  30. Tian X, Zhu M, Du L et al (2013) Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy. Small 9:2432–2439

    Article  Google Scholar 

  31. Ye R, Xu H, Wan C et al (2013) Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochem Biophys Res Commun 439:148–153

    Article  Google Scholar 

  32. Foti JJ, Devadoss B, Winkler JA et al (2012) Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336:315–319

    Article  Google Scholar 

  33. Wang X, Zhao X (2009) Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother 53:1395–1402

    Article  Google Scholar 

  34. Fu M, Song X, Yu Z et al (2013) Responses of phosphate transporter gene and alkaline phosphatase in Thalassiosira pseudonana to phosphine. PLoS One 8:e59770

    Article  Google Scholar 

  35. Yang K, Metcalf WW (2004) A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc Natl Acad Sci USA 101:7919–7924

    Article  Google Scholar 

  36. Li YY, Zhou YL, Wang HY et al (2011) Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew Chem Int Ed 50:5860–5864

    Article  Google Scholar 

  37. Yang D, Zhao YL, Ying GG et al (2010) [Gd@C82(OH)22] n nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 4:1178–1186

    Article  Google Scholar 

  38. Liu Y, Imlay JA (2013) Cell death from antibiotics without the involvement of reactive oxygen species. Science 339:1210–1213

    Article  Google Scholar 

  39. Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164

    Article  Google Scholar 

  40. Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410

    Article  Google Scholar 

  41. Zhang W, Wang C, Li Z et al (2012) Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24:5391–5397

    Article  Google Scholar 

  42. Muller BH, Lamoure C, Le Du MH et al (2001) Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket. ChemBioChem 2:517–523

    Article  Google Scholar 

  43. Huang CT, Xu KD, McFeters GA et al (1998) Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol 64:1526–1531

    Google Scholar 

  44. Sebastian M, Ammerman JW (2009) The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J 3:563–572

    Article  Google Scholar 

  45. Liu Y, Tan H (2014) Changes of growth and nutrient-relating enzymatic activities of Sargassum thunbergii when exposed to different nutrient conditions. Aquat Sci Technol 2:1

    Article  Google Scholar 

  46. Das P, Xenopoulos MA, Williams CJ et al (2012) Effects of silver nanoparticles on bacterial activity in natural waters. Environ Toxicol Chem 31:122–130

    Article  Google Scholar 

  47. Wang B, Feng WY, Zhao YL et al (2005) Status of study on biological and toxicological effects of nanoscale materials. Sci China Ser B Chem 48:385–394

    Google Scholar 

  48. Zhang ZY, Zhao YL, Chai ZF (2009) Applications of radiotracer techniques for the pharmacology and toxicology studies of nanomaterials. Chin Sci Bull 54:173–182

    Article  Google Scholar 

  49. Vijayakumar PS, Prasad BL (2009) Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents. Langmuir 25:11741–11747

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2012CB934000, 2011CB933400) and the National Natural Science Foundation of China (31325010, 21277037).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjun Nie.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Wang, H., Ji, T. et al. Biodegradable cationic ε-poly-L-lysine-conjugated polymeric nanoparticles as a new effective antibacterial agent. Sci. Bull. 60, 216–226 (2015). https://doi.org/10.1007/s11434-014-0704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0704-9

Keywords

关键词

Navigation