Skip to main content
Log in

Production of high lignin-containing and lignin-free cellulose nanocrystals from wood

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A new method is described for producing high-lignin-containing and lignin-free cellulose nanocrystals from poplar wood (HLCNCs and LFCNCs, respectively). This was accomplished by first hydrothermally treating the poplar wood fibers at 170 °C for 45 min in a Parr reactor. For obtaining HLCNCs, the treated fibers were directly hydrolyzed by 64% sulfuric acid whereas for LFCNCs, the fibers were delignified prior to the acid hydrolysis. The CNCs thus produced were characterized using spectroscopy, microscopy, and diffraction techniques and compared with bleached kraft pulp-CNCs. The comparison indicated that while LFCNCs and pulp-CNCs had similar properties, the HLCNCs are expected to be superior for certain applications due to their hydrophobicity that was caused by presence of lignin nanoparticles. Lastly, results of the experiment where treatment temperature was varied during the hydrothermal treatment indicated that crystallinity of the CNCs produced from 200 °C treated poplar was higher compared to 170 °C treated substrate. This implied that CNCs from wood can be produced that have varying degree of crystallinity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abidi N, Cabrales L, Hequet E (2010) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320

    Article  CAS  Google Scholar 

  • Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616

    Article  CAS  Google Scholar 

  • Agarwal UP (2018) Raman spectroscopy in the analysis of cellulose nanomaterials. In: Agarwal UP, Atalla RH, Isogai A (eds) Nanocelluloses: their preparation, properties, and applications, ACS symposium series, chapter 4. American Chemical Society, Washington (in press)

    Google Scholar 

  • Agarwal UP, Atalla RH (2010) Vibrational spectroscopy. In: Heitner C, Dimmel D, Schmidt J (eds) Lignin and lignans: advances in chemistry, chapter 4. CRC Press, Boca Raton, pp 103–135

    Chapter  Google Scholar 

  • Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655

    Article  CAS  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733

    Article  CAS  Google Scholar 

  • Agarwal UP, Sabo R, Reiner RS, Clemons CM, Rudie AW (2012) Spatially resolved characterization of cellulose nanocrystal-polypropylene composite by confocal Raman microscopy. Appl Spectrosc 66:750–756

    Article  CAS  PubMed  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2013) Estimation of cellulose crystallinity of lignocelluloses using near-IR FT–Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. J Agric Food Chem 61:103–113

    Article  CAS  PubMed  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Moore RK, Baez C (2014) Impacts of fiber orientation and milling on observed crystallinity in jack pine. Wood Sci Technol 48:1213–1227

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2017a) Production of cellulose nanocrystals from raw wood via hydrothermal treatment. US patent application 20170260692. https://patents.google.com/patent/US20170260692A1/en?oq=15455211

  • Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017b) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1984

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohyd Polym 190:260–270

    Article  CAS  Google Scholar 

  • Ahlgren PA, Goring DAI (1971) Removal of wood components during chlorite delignification of black spruce. Can J Chem 49:1272–1275

    Article  CAS  Google Scholar 

  • Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353

    Article  CAS  Google Scholar 

  • Assor C, Placet V, Chabbert B, Habrant A, Lapierre C, Pollet B, Perre P (2009) Concomitant changes in viscoelastic properties and amorphous polymers during the hydrothermal treatment of hardwood and softwood. J Agric Food Chem 57:6830–6837

    Article  CAS  PubMed  Google Scholar 

  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25:7675–7685

    Article  CAS  PubMed  Google Scholar 

  • Azizi MASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Bian H, Chen L, Dai H, Zhu JY (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohyd Polym 167:167–176

    Article  CAS  Google Scholar 

  • Bian H, Gao Y, Wang R, Liu Z, Wu W, Dai H (2018) Contribution of lignin to the surface structure and physical performance of cellulose nanofibrils film. Cellulose. https://doi.org/10.1007/s10570-018-1658-x

    Article  Google Scholar 

  • Bondeson D, Mathew AP, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2015) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114

    Article  CAS  Google Scholar 

  • Carrillo I, Mendonça RT, Ago M, Rojas OJ (2018) Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose. https://doi.org/10.1007/s10570-018-1653-2

    Article  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762

    Article  CAS  Google Scholar 

  • Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843

    Article  CAS  Google Scholar 

  • Dahlke B, Larbig H, Scherzer HD, Poltrock R (1998) Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plast 34:361–379

    Article  CAS  Google Scholar 

  • Davis MW (1998) A rapid method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulse amperometric detection (HPAE/PAD). J Wood Chem Technol 18:235–252

    Article  CAS  Google Scholar 

  • Domingues R, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346

    Article  CAS  PubMed  Google Scholar 

  • Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679

    Article  CAS  PubMed  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohyd Polym 75:85–89

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  • Grupper N (2008) Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci 43:5222–5229

    Article  CAS  Google Scholar 

  • Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA (2017) Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain Chem Eng 5:1711–1720

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    Article  CAS  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  • Horikawa Y, Shimizu M, Saito T, Isogai A, Imai T, Sugiyama J (2018) Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. Int J Biol Macromol 109:569–575

    Article  CAS  PubMed  Google Scholar 

  • Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11:2300–2305

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109–1112

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohyd Polym 63:198–204

    Article  CAS  Google Scholar 

  • Mao J, Abushammala H, Brown N, Laborie MP (2018) Comparative assessment of methods for producing cellulose I nanocrystals from cellulosic sources. In: Agarwal UP, Atalla RH, Isogai A (eds) Nanocelluloses: their preparation, properties, and applications, ACS symposium series, chapter 2. American Chemical Society, Washington (in press)

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Nelson K, Retsina T, Iakovlev M, van Heiningen A, Deng Y, Shatkin JA, Mulyadi A (2016) American process: production of low cost nanocellulose for renewable, advanced materials applications. In: Madsen L, Svedberg E (eds) Materials research for manufacturing. Springer series in materials science, vol 224. Springer, Cham

    Google Scholar 

  • Olkowski AA, Laarveld B (2013) Catalytic biomass conversion. http://www.google.com/patents/WO2013000074A1?cl=en

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820

    Article  CAS  Google Scholar 

  • Reiner RS, Rudie AW (2013) Process scale-up of cellulose nanocrystal production to 25 kg per batch at the Forest Products Laboratory. In: Postek MT, Moon RJ, Rudie AJ, Bilodeau MA (eds) Production and applications of cellulose nanomaterials. TAPPI Press, Atlanta, pp 21–24

    Google Scholar 

  • Retsina T, Nelson K (2017) Nanocellulose compositions and processes to produce same. US patent application US20170190800. http://www.google.com/patents/US20170190800

  • Sabo RC, Yermakov A, Law CT, Elhajjar R (2016) Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: a review. J Renew Mater 4:297–312

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Silveira RL, Stoyanov SR, Kovalenko A, Skaf MS (2016) Cellulose aggregation under hydrothermal pretreatment conditions. Biomacromolecules 17:2582–2590

    Article  CAS  PubMed  Google Scholar 

  • TAPPI Test Method (1983) Acid insoluble lignin in wood and pulp; official test method T-222 (Om). TAPPI, Atlanta

    Google Scholar 

  • Wei L, Agarwal UP, Matuana L, Sabo RC, Stark NM (2018) Performance of high lignin content cellulose nanocrystals in poly (lactic acid). Polymer 135:305–313

    Article  CAS  Google Scholar 

  • Program ImageJ. https://imagej.nih.gov/ij/

  • Yang J, Han C, Duan J, Xu F, Sun R (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Berglund L, Salmen L (2011) Effect of steam treatment on the properties of wood cell walls. Biomacromolecules 12:194–202

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013a) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    Article  CAS  Google Scholar 

  • Yu H, Qin Z, Liu L, Yang X, Zhou Y, Yao J (2013b) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Debby Sherman (DSimaging, LLC) for obtaining the TEMs of CNCs. Also, Fred Matt of Analytical Chemistry and Microscopy Laboratory is acknowledged for the chemical analyses of the samples. The authors gratefully acknowledge use of X-ray facilities and instrumentation supported by NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR-1121288).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Umesh P. Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, U.P., Ralph, S.A., Reiner, R.S. et al. Production of high lignin-containing and lignin-free cellulose nanocrystals from wood. Cellulose 25, 5791–5805 (2018). https://doi.org/10.1007/s10570-018-1984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1984-z

Keywords

Navigation