Skip to main content
Log in

Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The length of cellulose nanofibrils (CNFs) is a significant parameter for various applications. The goal of this research was to employ a fabrication method to produce length-controlled CNFs; the chosen technique was enzy-grinding (enzyme pretreatment followed by mechanical grinding). Here, we presented the results of the optimization of the diameter and length, the characterization of the properties of CNFs and nanofilms prepared using these fibrils. The cellulose morphology, crystallinity index (CrI), chemical structure, and thermal stability were investigated as functions of the enzyme loading and hydrolysis time. The results showed that enzy-grinding could effectively reduce the diameter and length of cellulose fibrils. The average diameter was about 8.6 ± 3.6 nm, and the length could be controlled over the range from 0.76 ± 0.38 μm to ≥ 4 μm (i.e. aspect ratios from 43 to ≥ 328). After the grinding process, the CNFs maintained high thermal stability and no change in the chemical structure compared to the original pulp. The transmittance and mechanical properties of the CNF films were strongly dependent on the fibril length. The fabrication of length-controlled CNFs using the enzy-grinding process is meaningful and significant research which could be relevant to the optimization of such materials for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akerholm M, Salm NL (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969

    Article  CAS  Google Scholar 

  • Chen Y, He Y, Fan D, Han Y, Li G, Wang S (2016) An efficient method for cellulose nanofibrils length shearing via environmentally friendly mixed cellulase pretreatment. J Nanomater 2017. doi:10.1155/2017/1591504

    Google Scholar 

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

    Article  CAS  Google Scholar 

  • Azizi SM et al (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37(11):4313–4316

    Article  CAS  Google Scholar 

  • Belbekhouche S et al (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83(4):1740–1748

    Article  CAS  Google Scholar 

  • Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169

    Article  CAS  PubMed  Google Scholar 

  • Brito BS et al (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536

    Article  CAS  Google Scholar 

  • Campbell MG et al (2014) Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods. Materials 7(4):3021–3033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80

    Article  CAS  PubMed  Google Scholar 

  • Du H et al (2016) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the nanofibrils high-pressure homogenization. Ind Crops Prod 94:736–745

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  CAS  Google Scholar 

  • Eichhorn S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Fraschini C et al (2014) Critical discussion of light scattering and microscopy techniques for CNC particle sizing. Nord Pulp Pap Res J 29(1):31–40

    Article  CAS  Google Scholar 

  • Gierlinger N, Schmidt GM (2008) In situ FT-IR microscopic study on enzymatic treamtment of poplar wood cross-sections. Biomacromol 9(8):2194–2201

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, selfassembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Henriksson M et al (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441

    Article  CAS  Google Scholar 

  • Herrick FW et al (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Jackson JK et al (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6(6):321–330

    CAS  Google Scholar 

  • Jalak J et al (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287(34):28802–28815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637

    Article  CAS  Google Scholar 

  • Klemm D et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Kolakovic R et al (2012) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  • Krässig HA (ed) (1993) Cellulose: structure, accessibility, and reactivity. Gordon and Breach Science, Pennsylvania

  • Lavoine N et al (2014) Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporpous networks of microfibrillated cellulose. Cellulose 21(6):4429–4442

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294

    Article  CAS  PubMed  Google Scholar 

  • Liu YS et al (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286(13):11195–11201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez M et al (2010) Enthalpic studies of xyloglucan-cellulose interactions. Biomacromol 11(6):1417–1428

    Article  CAS  Google Scholar 

  • Mendez J et al (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44(17):6827–6835

    Article  CAS  Google Scholar 

  • Moon RJ et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68(9):2383–2393

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  • Normand ML, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr Polym 111(20):979–987

    Article  PubMed  CAS  Google Scholar 

  • Qing Y et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97(1):226–234

    Article  CAS  Google Scholar 

  • Querejeta-Fernández A et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136(12):4788–4793

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich ML, Melnick MS, Bolbova AV (2002) The structure and mechanism of action of cellulolytic enzymes. Biochem Moscow 67(8):850–871

    Article  CAS  Google Scholar 

  • Rees A et al (2015) 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int 2:168–172

    Google Scholar 

  • Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138

    Article  CAS  PubMed  Google Scholar 

  • Salas C et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396

    Article  CAS  Google Scholar 

  • Segal L et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Shao Y et al (2015) Use of microfibrillated cellulose/lignosulfonate blend as carbon precursors: impact of hvdrogel rheology on 3D printing. Ind Eng Chem Res 54(43):10575–10582

    Article  CAS  Google Scholar 

  • Shopsowitz KE et al (2014) Biopolymer template glass with a twist: controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystals. Adv Funct Mater 24(3):327–338

    Article  CAS  Google Scholar 

  • Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44(2):427–436

    Article  CAS  Google Scholar 

  • Siqueira G et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158

    Article  CAS  Google Scholar 

  • Spence KL et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111

    Article  CAS  Google Scholar 

  • Yarbrough JM et al (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11(3):3101–3109

    Article  CAS  PubMed  Google Scholar 

  • Zhu H et al (2013) Transparent paper: fabrications, properties, and device application. Energy Environ Sci 7(1):269–287

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Fund for Forest Scientific Research in the Public Welfare (201504603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaiyun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fan, D., Han, Y. et al. Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding. Cellulose 24, 5431–5442 (2017). https://doi.org/10.1007/s10570-017-1499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1499-z

Keywords

Navigation